SUPPORTING INFORMATION FOR

Organometallic Cobalamin Anticancer Derivatives for Targeted Prodrug Delivery via Transcobalamin-Mediated Uptake

Jeremie Rossier ${ }^{\dagger}$, Daniel Hauser ${ }^{\ddagger}$, Emmanuel Kottelat ${ }^{\dagger}$, Barbara Rothen-Ruthishauser ${ }^{\ddagger}$, and Fabio Zobi ${ }^{\dagger}$,*

Departement of Chemistry and the Adolphe Merkle Institute, University of Fribourg, CH-1700 Fribourg, Switzerland
*To whom all the correspondence should be addressed.

Phone (+41) 2630087 85, Fax (+41) 2630097 37, E-mail : fabio.zobi@unifr.ch

Contents

Experimental Section S3
Synthesis and characterization S3
Synthesis and characterization of the metal complexes S3
Characterization of the Vitamin B_{12} derivatives. S4
Supporting figures S6
Figure S1. Atom numbering used for derivatives $\mathrm{B}_{12}-\mathrm{Bpy} / \mathbf{1 / 2 / 4 - C B C}$ S6
Figure S2. ${ }^{1} \mathrm{H}$-NMR of complex 1 S7
Figure S3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of complex 2 S7
Figure S4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of derivative B_{12}-bpy S8
Figure $\mathrm{S} 5 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ of derivative $\mathrm{B}_{12}-\mathbf{1}$ S9
Figure S6. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of derivative $\mathrm{B}_{12}-\mathbf{2}$ S10
Figure $\mathrm{S} 7 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ of derivative $\mathrm{B}_{12}-4-\mathrm{CBC}$ S11
Figure S8. UV-Vis spectra of complexes $\mathbf{1}$ to $\mathbf{3}$ and derivatives $B_{12}-\mathbf{1}$ to -3 S12
Figure S9. UV-Vis and emission spectra of compound $B_{12}-4-C B C$ S12
Figure S10. X-ray data-based MM model of $\mathrm{B}_{12}-1$ S13
Figure S11. Low temperature incubation of $\mathrm{B}_{12}-4-\mathrm{CBC}$ S13
Figure S12. Co-localization of $\mathrm{B}_{12}-4-\mathrm{CBC}$ with Lysotracker S14
References S15

Synthesis and characterization

General synthesis of metal complexes

[$\mathrm{Pt}(\mathrm{HCC}-b p y) \mathrm{Cl}_{2}$] (1). A mixture of cis-Dichlorobis(dimethyl sulfoxide)platinum(II) (150 mg , $35.5 \mathrm{mmol}, 1.0$ eq.) and 4-ethynyl-2,2'-bipyridine ($76.7 \mathrm{mg}, 43.0 \mathrm{mmol}, 1.2$ eq.) was dissolved in DMF (10 ml) and stirred overnight at room temperature. Upon addition of water $(2 \mathrm{ml})$, a bright yellow precipitate formed. The precipitate was filtered and washed with $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{ml})$ and $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{ml})$. The solid was dried under vacuum and used without further purification. Yield: 142 mg (90%); ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-[d6]): $\delta=9.51$ (dd, J = $5.84,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-11 \mathrm{~L}), 9.49(\mathrm{~d}, \mathrm{~J}=6.35 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-7 \mathrm{~L}) 8.73(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-4 \mathrm{~L})$, 8.68 (d, J = $7.95 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-9 \mathrm{~L}$), 8.42 (dt, J = 7.95, $1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-10 \mathrm{~L}$), 7.91-7.84 (m, 2H, HC-5L, HC-12L), 5.20 (s, 1H, HC-1L) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-[d6]): $\delta=157.2$, $156.3,148.4,148.1,140.6,133.3,129.5,128.0,126.4,124.6,90.7,80.2 \mathrm{ppm},{ }^{195} \mathrm{Pt}(107$ MHz, DMSO-[d6], referred to $\mathrm{Na}_{2}\left[\mathrm{PtCl}_{6}\right]$): $\delta=-2300$ ppm; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Pt}$: C, 32.30; H, 1.81; N, 6.28. Found: C, 32.17; H, 1.91; N, 6.40; IR (solid state, $\mathrm{KBr}, \mathrm{cm}^{-1}$): $\mathrm{v}_{\mathrm{C}=\mathrm{C}}$ 2113.
$\left[\mathrm{Ru}\left(\left(\mathrm{Et}_{2} \mathrm{~N}\right)_{2} \mathrm{Bpy}\right)_{2}(\mathrm{HCC}\right.$-bpy $\left.)\right] \mathrm{Cl}_{3}$ (2). A mixture of $\left[\mathrm{Ru}\left(\left(\mathrm{Et}_{2} \mathrm{~N}\right)_{2} \mathrm{Bpy}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}^{[1]} \quad(250 \mathrm{mg}, 0.32$ mmol, 1.0 eq.), 4-ethynyl-2,2'-bipyridine ($175 \mathrm{mg}, 0.97 \mathrm{mmol}, 3.0$ eq.) and trimethylamine ($0.01 \mathrm{ml}, 0.14 \mathrm{mmol}, 0.5 \mathrm{eq}$.) was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{ml})$ and heated at reflux under an argon atmosphere for 4 h . The solution was allowed to cool and the solvent removed by rotary evaporation. The crude product (460 mg) was redissolved in the minimum amount of $\mathrm{CH}_{3} \mathrm{CN}$ and purified by column chromatography on silica gel using acetonitrile, water, methanol and saturated $\mathrm{NaCl}(0.6: 0.149: 0.25: 0.1 \%)$. The first band to elute (purple) was discarded and the second band (deep red) collected. After evaporation of the solvent, the solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and suction filtered to remove insolubles (presumably NaCl). The filtrate was dried under vacuum to yield $233 \mathrm{mg}(82 \%)$ of the compound 2. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-[d d_{6}): $\delta=8.84$ (s, 1H, HC-7L), 8.82 ($\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-12 \mathrm{~L}$), 8.01 (td, J = 8.0, 1.2 Hz, 1H, HC-11L), 7.87 (m, 2H, HC-9L, HC-4L), 7.58-7.53 (m, 6H, HC16/19/34/37L, HC-10L, HC-5L), 7.12 (d, J = $3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-40 \mathrm{~L}$), 7.10 (d, J = $3.3 \mathrm{~Hz}, 1 \mathrm{H}$, HC-13L), 6.94 (d, J = 6.8 Hz, 1H, HC-31L), 6.85 (d, J = $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-22 \mathrm{~L}$), 6.81 (td, J = 6.8, 2.7 Hz, 2H, HC-14L, HC-39L), 6.63 (m, 2H, HC-21L, HC-32L), 4.90 (s, 1H, HC-1L), 3.56$3.46 \quad(\mathrm{~m}, \quad 16 \mathrm{H}, \quad \mathrm{HC}-23 / 25 / 27 / 29 / 41 / 43 / 45 / 47 \mathrm{~L})$, $1.16-1.06(\mathrm{~m}, \quad 24 \mathrm{H}, \quad \mathrm{HC}-$ 24/26/28/30/42/44/46/48L); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\left[\mathrm{d}_{6}\right]$): $\delta=158.3,157.1,156.6,156.5$, $156.2,156.1,152.0,151.9,151.8,151.7,151.0,150.8,149.2,149.0,148.7,148.5,135.5$, 128.8, 127.7, 127.5, 125.8, 124.3, 109.6, 109.4, 105.2, 105.1, 88.2, 80.6, 43.5, 12.0, 11.9; Anal. Calcd. for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{Cl}_{3} \mathrm{~N}_{10}$ Ru: C, 58.56; H, 6.14; $\mathrm{N}, 14.23$. Found: C, 58.91; H, 6.11; N , 13.77; HRMS $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}]^{2+}=439.2020$, calculated for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{~N}_{10} \mathrm{Ru}_{1}=439.2022$; IR (solid state, $\left.\mathrm{KBr}, \mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C} \equiv \mathrm{C}} 2122$.
$\left[\operatorname{Re}(H C C-b p y)(C O)_{2} \mathrm{Br}_{2}\right]$ (3). A mixture of $(\mathrm{Et} 4 \mathrm{~N})_{2}\left[\operatorname{Re}(\mathrm{CO})_{2} \mathrm{Br}_{4}\right]^{[2]}(100 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ eq.) and 4-ethynyl-2, 2^{\prime}-bipyridine ($27 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.25 \mathrm{eq}$.) was dissolved in DME (10 ml) and stirred during 4 h at $60^{\circ} \mathrm{C}$. The solution was dried under vacuum, dissolved in a minimum amount of CHCl_{3} and purified by column chromatography on silica gel using $\mathrm{CHCl}_{3} /$ Ethanol (200:1). The first band to elute (dark brown) was determined to be complex 3. Yield: 43 mg (61\%); NMR spectrum is not reported because the compound is paramagnetic; Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Re}$: C, 28.88; $\mathrm{H}, 1.38$; $\mathrm{N}, 4.81$. Found: C, 28.71; $\mathrm{H}, 1.28 ; \mathrm{N}, 4.81$; MS MALDI-TOF (POS, DCTB): [M] ${ }^{+}=580.8433$, calculated for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Re}=580.8510$; IR (solid state, $\mathrm{KBr}, \mathrm{cm}^{-1}$): $\mathrm{v}_{\mathrm{C}=\mathrm{C}} 2119, \mathrm{v}_{\mathrm{C}=\mathrm{o}} 1994,1842$.
[Ru(HCC-bpy)(bpy) $\left.{ }_{2}\right]_{C l}$ (4). Complex 4 was obtained via anion metathesis starting from $\left[\mathrm{Ru}(\mathrm{HCC}-\mathrm{bpy})(\mathrm{bpy})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} .{ }^{[3]}$ The latter was dissolved in acetone and an aqueous solution of concentrated tetrabuthylammonium chloride was added dropwise until precipitation of 4 occurred.

Characterization of the vitamin B_{12} derivatives

B_{12}-bpy. Red powder; Yield: 52.8 mg (78\%); ${ }^{1} \mathrm{H}$ NMR (500 MHz, MeOD-[d d_{4}): $\delta=8.73$ (d, J = 4.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{HC}-9 \mathrm{~L}$), 8.41 ($\mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-5 \mathrm{~L}$), 8.23 ($\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-12 \mathrm{~L}$), 8.07 (t, J = 8 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{HC}-11 \mathrm{~L}), 7.84$ (s, 1H, HC-7L), 7.60 (dd, J = 5.2, $2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-10 \mathrm{~L}$), 7.24 (s, 1H, HC$7 \mathrm{~N}), 7.22$ (s, 1H, HC-2N), 7.07 (d, J = $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-4 \mathrm{~L}$), 6.62 (s, 1H, HC-4N), 6.27 (d, J = 3.2 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{HC}-1 \mathrm{R}), 6.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}-10), 4.72-4.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HC}-3 \mathrm{R}), 4.55(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-3)$, 4.38-4.28 (m, 1H, HC-19), $4.20(\mathrm{t}, \mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-176), 4.13-4.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HC}-2 \mathrm{R}), 3.92$ (dd, $J=9.5,3.2,1 H, H C-4 R$), 3.78-3.64 (m, 3H, H b C-5R, $\mathrm{H}_{\mathrm{a}} \mathrm{C}-5 R, \mathrm{H}_{\mathrm{b}} \mathrm{C}-175$), 3.27 (m, 2H, HC-8, HC13), 2.88-2.80 (m, 2H, $\left.\mathrm{H}_{\mathrm{a}} \mathrm{C}-175, \mathrm{HC}-18\right)$, 2.66-2.62 (m, 1H, HC-8), 2.6 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-51$), 2.60-5.58 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-151$), 2.57 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}} \mathrm{C}-132$), 2.56-2.53 (m, 2H, $\mathrm{H}_{2} \mathrm{C}-32$), 2.52-2.47 (m, 3H, $\mathrm{H}_{\mathrm{b}} \mathrm{C}-21$, $\left.\mathrm{H}_{\mathrm{a}} \mathrm{C}-132 \mathrm{H}_{\mathrm{b}} \mathrm{C}-71\right)$, 2.45-2.36 (m, 2H, $\left.\mathrm{H}_{\mathrm{b}} \mathrm{C}-181, \mathrm{H}_{\mathrm{a}} \mathrm{C}-21\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-11 \mathrm{~N}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-\right.$ 10 N), 2.24-2.16 (m, 1H, $\mathrm{H}_{\mathrm{a}} \mathrm{C}-171$), 2.10-2.01 (m, 3H, $\mathrm{H}_{\mathrm{a}} \mathrm{C}-181, \mathrm{H}_{\mathrm{b}} \mathrm{C}-131, \mathrm{H}_{\mathrm{a}} \mathrm{C}-71$), 2.00-1.96 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{b}} \mathrm{C}-81$), 1.95-1.87 (m, 3H, $\mathrm{H}_{\mathrm{b}} \mathrm{C}-31, \mathrm{H}_{\mathrm{a}} \mathrm{C}-31, \mathrm{H}_{\mathrm{a}} \mathrm{C}-131$), 1.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-7 \mathrm{~A}$), 1.83-1.78 (m, $1 \mathrm{H}, \mathrm{H}_{\mathrm{a}} \mathrm{C}-172$), 1.77 (m, 1H, $\mathrm{H}_{\mathrm{b}} \mathrm{C}-82$), 1.46 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-12 \mathrm{~A}$), 1.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-2 \mathrm{~A}$), 1.36 (m, 1H, $\mathrm{H}_{\mathrm{a}}-82$), 1.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-17 \mathrm{~B}$), 1.31 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}} \mathrm{C}-81$), 1.25 (d, J = $6.25 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-177$), 1.15 (s , $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-12 \mathrm{~B}$), $0.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-1 \mathrm{~A}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}-\left[\mathrm{d}_{4}\right]$): $\delta=180.2,178.7$, $177.7,177.3,176.8,176.5,175.8,175.5,174.5,174.4,166.6,166.4,150.1,146.4,143.7,140.3$, $138.7,135.2,131.6,128.0,127.1,125.2,123.4,118.4,112.2,108.1,104.9,102.3,95.5,87.9$, 86.3, 83.6, 75.9, 75.6, 73.8, 73.7, 70.8, 62.7, 60.0, 57.1, 56.3, 55.1, 52.1, 46.7, 43.9, 43.9, 43.8, $40.1,36.4,35.3,33.4,33.1,32.9,32.5,32.0,29.6,27.5,27.4,20.9,20.8,20.3,20.1,20.0,17.6$, 17.2, 16.4, 16.1 ppm ; HRMS $\left(\mathrm{ESI}^{+}\right): \quad[\mathrm{M}+\mathrm{Na}]^{+}=1530.6148$, calculated for $\mathrm{C}_{74} \mathrm{H}_{95} \mathrm{Cl}_{2} \mathrm{Co}_{1} \mathrm{~N}_{15} \mathrm{O}_{14} \mathrm{P}_{1} \mathrm{Na}_{2}=1530.6144$; IR (solid state, $\mathrm{KBr}, \mathrm{cm}^{-1}$): $\mathrm{v}_{\mathrm{C}=\mathrm{C}} 2124$.
B_{12}-1. Red powder; Yield: 52.7 mg (61\%); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-\left[\mathrm{d}_{4}\right]$): $\delta=8.88$ (d, J = 5.0 Hz, 1H, HC-9L), 8.50 (d, J = 5.0 Hz, 1H, HC-5L), 8.25-8.15 (m, 2H, HC-11, HC-12L), 7.60 (s, 1H, HC-7L), 7.49 (m, 1H, HC-10L), 7.25 (s, 1H, HC-7N), 7.23 (s, 1H, HC-2N), 6.86 (d, J = 5.0 Hz, 1H, HC-4L), 6.65 (s, 1H, HC-4N), 6.28 (d, J = $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-1 \mathrm{R}$), 6.0 (s, 1H, HC-10), 4.70-4.63 (m, 1H, HC-3R), 4.57 (s, 1H, HC-3), 4.39 (d, J = 11.3 Hz, 1H, HC-19), 4.36-4.29 (m, 1H, HC-176), 4.22-4.18 (m, 1H, HC-2R), 4.14-4.08 (m, 1H, HC-4R), 3.92 ($\mathrm{d}, \mathrm{J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}} \mathrm{C}-5 \mathrm{R}$), 3.803.71 (m, 2H, $\mathrm{H}_{\mathrm{a}} \mathrm{C}-5 \mathrm{R}, \mathrm{H}_{\mathrm{b}} \mathrm{C}-175$), 3.67 (m, 2H, HC-8, HC-13), 2.83 (m, 2H, $\mathrm{H}_{\mathrm{a}} \mathrm{C}-175, \mathrm{HC}-18$), 2.73 (m, 3H, $\mathrm{H}_{3} \mathrm{C}-51$), 2.71-2.67 (m, 3H, $\mathrm{H}_{3} \mathrm{C}-151$), 2.61 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}} \mathrm{C}-21, \mathrm{H}_{\mathrm{a}} \mathrm{C}-132 \mathrm{H}_{\mathrm{b}} \mathrm{C}-71$), 2.57-2.53 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}} \mathrm{C}-132$), 2.53-2.48 (m, 2H, $\mathrm{H}_{2} \mathrm{C}-32$), 2.31 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-11 \mathrm{~N}$), 2.29 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-10 \mathrm{~N}$), 2.20 (t, J = 12.9 Hz, 1H, HaC-171), 2.13-2.04 (m, 3H, $\mathrm{H}_{\mathrm{a}} \mathrm{C}-181, \mathrm{H}_{\mathrm{b}} \mathrm{C}-131, \mathrm{H}_{\mathrm{a}} \mathrm{C}-71$), 2.03-1.94 (m, 4H, $\mathrm{H}_{\mathrm{b}} \mathrm{C}-81, \mathrm{H}_{\mathrm{b}} \mathrm{C}-31, \mathrm{H}_{\mathrm{a}} \mathrm{C}-31, \mathrm{H}_{\mathrm{a}} \mathrm{C}-131$), $1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-7 \mathrm{~A}\right)$, 1.86-1.80 (m, 1H, $\mathrm{H}_{\mathrm{a}} \mathrm{C}-172$), 1.78-1.71 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}} \mathrm{C}-82$), $1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-12 \mathrm{~A}\right), 1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-2 \mathrm{~A}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-17 \mathrm{~B}\right), 1.28(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}_{\mathrm{a}} \mathrm{C}-81$), 1.25 (d, J = 6.25 Hz, 3H, $\mathrm{H}_{3} \mathrm{C}-177$), 1.12 (s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-12 \mathrm{~B}$), 0.51 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-1 \mathrm{~A}$) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz , MeOD-[d $\left.\mathrm{d}_{4}\right]$): $\delta=180.3,178.8,177.8,177.3,176.9,176.4,176.3,175.9$, $174.9,174.6,174.5,166.5,166.4,158.4,158.4,157.9,149.2,148.5,143.8,141.6,139.1,138.7$, $135.1,133.6,131.6,129.3,128.1,127.2,126.2,118.4,112.2,108.0,105.0,101.9,95.3,87.9$, $86.4,83.6,83.5,76.0,75.6,73.6,73.5,70.8,62.8,60.3,56.9,56.3,55.0,52.0,46.7,45.1,43.5$, $40.2,36.6,35.4,33.7,33.2,33.1,33.0,32.3,30.7,29.7,27.5,20.9,20.6,20.4,20.3,20.2,20.1$, 20.0, 18.2, 17.7, 16.8, $16.4 \mathrm{ppm},{ }^{195} \mathrm{Pt}\left(107 \mathrm{MHz}\right.$, DMSO-[d $\left.\mathrm{d}_{6}\right]$, referred to $\left.\mathrm{Na}_{2}\left[\mathrm{PtCl}_{6}\right]\right): \delta=-2311$ ppm; HRMS (ESI $):[\mathrm{M}+2 \mathrm{Na}]^{2+}=909.7522$, calculated for $\mathrm{C}_{74} \mathrm{H}_{95} \mathrm{Cl}_{2} \mathrm{Co}_{1} \mathrm{~N}_{15} \mathrm{O}_{14} \mathrm{P}_{1} \mathrm{Pt}_{1} \mathrm{Na}_{2}=$ 909.7533; IR (solid state, $\mathrm{KBr}, \mathrm{cm}^{-1}$): $\mathrm{v}_{\mathrm{C} \equiv \mathrm{C}} 2123$.
$\mathbf{B}_{12}-\mathbf{2}$. The following modification was applied to the general procedure: the first crude precipitate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered to remove the excess of $\mathbf{2}$. The remaining mixture was then purified as described above. Deep red powder; Yield: 71.2 mg (73\%); ${ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD$\left.\left[d_{4}\right]\right): \delta=8.31(\mathrm{t}, \mathrm{J}=8.25 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-9 \mathrm{~L}), 7.94(\mathrm{br} \mathrm{d}, \mathrm{J}=5.15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-12 \mathrm{~L}), 7.90(\mathrm{dd}, \mathrm{J}=7.2$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-10 \mathrm{~L}), 7.78$ (d, J = 7Hz, 1H, HC-5L), 7.67 (dd, J = 4, $1.65 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-7 \mathrm{~L}), 7.57-$ 7.59 (m, 4H, HC-16/19/34/37L), 7.41-7.34 (m, 1H, HC-11L), 7.25-7.18 (m, 4H, HC-7N, HC-2N, HC-13/40L), 6.96-6.88 (m, 2H, HC-22/31L), 6.79 (d, J = 6 Hz, 1H, HC-4L), 6.68-6.20 (m, 2H, HC14/39L), $6.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}-4 \mathrm{~N}), 6.56-6.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HC}-21 / 32 \mathrm{~L}), 6.27(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-1 \mathrm{R}), 6.01$ (d, J = 7.30 Hz, 1H, HC-10), 4.70 (br s, 1H, HC-3R), 4.56-4.49 (m, 1H, HC-3), 4.40-4.27 (m, 2H, HC-19, HC-176), 4.23-4.18 (m, 1H, HC-2R), 4.13-4.07 (m, 1H, HC-4R), 3.92 (br d, J = 11 Hz ,
$1 \mathrm{H}, \mathrm{H}_{\mathrm{b}} \mathrm{C}-5 \mathrm{R}$), 3.75 (br d, J = $11 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{a}} \mathrm{C}-5 \mathrm{R}, \mathrm{H}_{\mathrm{b}} \mathrm{C}-175$), 3.69-3.62 (m, 2H, HC-8, HC-13), 3.59-3.49 (m, 16H, $\mathrm{H}_{2} \mathrm{C}-23 / 25 / 27 / 29 / 41 / 43 / 45 / 47 \mathrm{~L}$), 2.88-2.77 (m, $2 \mathrm{H}, \mathrm{H}_{\mathrm{a}} \mathrm{C}-175, \mathrm{HC}-18$), 2.642.60 (m, 3H, $\mathrm{H}_{3} \mathrm{C}-51$), 2.59 (br s, $3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-151$), 2.58-2.56 (m, 1H, $\mathrm{H}_{\mathrm{b}} \mathrm{C}-132$), $2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{b}} \mathrm{C}-21\right.$, $\mathrm{H}_{\mathrm{a}} \mathrm{C}-132 \mathrm{H}_{\mathrm{b}} \mathrm{C}-71$), 2.50-2.34 (m, 3H, $\mathrm{H}_{\mathrm{b}} \mathrm{C}-132, \mathrm{H}_{2} \mathrm{C}-32$), $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-11 \mathrm{~N}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-\right.$ $10 N), 2.18\left(\mathrm{t}, \mathrm{J}=13 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}} \mathrm{C}-171\right)$, 2.09-1.96 (m, 4H, $\left.\mathrm{H}_{\mathrm{a}} \mathrm{C}-181, \mathrm{H}_{\mathrm{b}} \mathrm{C}-131, \mathrm{H}_{\mathrm{a}} \mathrm{C}-71, \mathrm{H}_{\mathrm{b}} \mathrm{C}-81\right)$, 1.95-1.87 (m, 4H, $\mathrm{H}_{\mathrm{b}} \mathrm{C}-31, \mathrm{H}_{\mathrm{a}} \mathrm{C}-31, \mathrm{H}_{\mathrm{b}} \mathrm{C}-31, \mathrm{H}_{\mathrm{a}} \mathrm{C}-31$), $1.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-7 \mathrm{~A}\right)$, 1.82-1.76 (m, 2H, $\left.\mathrm{H}_{\mathrm{a}} \mathrm{C}-172\right)$, 1.76-1.67 (m, 1H, $\left.\mathrm{H}_{\mathrm{b}} \mathrm{C}-82\right), 1.45\left(\mathrm{~d}, \mathrm{~J}=3.85 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-12 \mathrm{~A}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-12 \mathrm{~A}\right)$, 1.27 ($d, J=10.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-17 \mathrm{~B}$), 1.26 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}} \mathrm{C}-81$), 1.25 ($\mathrm{d}, \mathrm{J}=6.45 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-177$), 1.23-1.16 (m, 24H, $\left.\mathrm{H}_{3} \mathrm{C}-24 / 26 / 28 / 30 / 42 / 44 / 46 / 48 \mathrm{~L}\right), 1.12\left(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-12 \mathrm{~B}\right), 0.49$ (s, $\left.3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-1 \mathrm{~A}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz , MeOD-[d $\left.\mathrm{d}_{4}\right]$): $\delta=180.2,178.6,177.8,177.3,176.8,176.4$, $176.1,175.7,174.8,174.7,174.4,174.2,166.5,166.2,166.1,159.3,159.2,158.7,158.6,158.3$, $153.9,153.8,153.7,152.4,151.7,150.5,150.4,143.7,138.7,136.5,135.2,134.2,133.4,131.6$, $129.3,127.9,125.6,124.6,124.5,118.4,112.2,110.4,110.3,106.4,106.3,106.2,104.9,101.2$, $95.5,87.9,86.3,75.7,75.6,73.8,70.8,62.8,60.6,57.1,56.3,54.9,52.2,52.1,46.7,45.2,44.2$, $40.1,36.5,35.3,33.4,33.0,32.9,32.6,32.1,32.0,29.7,27.4,27.3,20.9,20.7,20.3,20.2,20.1$, 20.0, 17.7, 17.3, 16.4, 16.2, 12.4, 12.3 ppm ; $\mathrm{HRMS}\left(E S I^{+}\right):[\mathrm{M}]^{2+}=1102.9715$, calculated for $\mathrm{C}_{110} \mathrm{H}_{147} \mathrm{Co}_{1} \mathrm{~N}_{23} \mathrm{O}_{14} \mathrm{P}_{1} \mathrm{Ru}_{1}=1102.9815$; IR (solid state, $\mathrm{KBr}, \mathrm{cm}^{-1}$): $\mathrm{v}_{\mathrm{C} \equiv \mathrm{C}} 2123$.
\mathbf{B}_{12}-3. Red powder; Yield: 65.9 mg (78\%); NMR spectrum is not reported because the compound is paramagnetic; $\left.\mathrm{HRMS}(\mathrm{ESI})^{+}\right):[\mathrm{M}+\mathrm{Na}]^{+}=1933.3912$, calculated for $\mathrm{C}_{76} \mathrm{H}_{95} \mathrm{Br}_{2}$ $\mathrm{Co}_{1} \mathrm{~N}_{15} \mathrm{O}_{16} \mathrm{P}_{1} \mathrm{Re}_{1} \mathrm{Na}_{1}=1933.3953$; IR (solid state, $\mathrm{KBr}, \mathrm{cm}^{-1}$): $\mathrm{v}_{\mathrm{C}=\mathrm{c}} 2122, \mathrm{v}_{\mathrm{C}=\mathrm{o}} 1999,1869$.
$B_{12}-4-C B C$. The rhodamine labeled vitamin B_{12} (CBC, 10 mg) previously described ${ }^{[4]}$ was reacted with 4 and purified similarly as for the other derivatives. Red powder; Yield: $13.9 \mathrm{mg}(72 \%) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, MeOD-[d $\left.\mathrm{d}_{4}\right]$): $\delta=8.69-8.63(\mathrm{~m}, 4 \mathrm{H}, \mathrm{HC}-13 / 22 / 31 / 40 \mathrm{~L}), 8.48(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, HC-9L), 8.41 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-3 R h$), 8.20 (dd, $J=8.25,1.73 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-4 \mathrm{Rh}$), 8.12-8.05 (m, 5H, HC-12L, HC-16/19/34/37L), 7.93 (d, J = $1.25 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-7 \mathrm{~L}), 7.77$ (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-$ 6Rh), 7.76-7.68 (m, 5H, HC-10L, HC-15/20/33/38L), 7.48-7.40 (m, 6H, HC-5/11L, HC14/21/32/39L), $7.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}-7 \mathrm{~N}), 7.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}-2 \mathrm{~N}), 6.94$ ($\mathrm{d}, \mathrm{J}=1.65 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{HC}-11 / 26 \mathrm{Rh}$), 6.87 (br s, 2H, HC-17/20Rh), 6.80 (m, 1H, HC-4L), $6.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}-4 \mathrm{~N}), 6.19(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}$, HC-1R), 5.98 (d, J = 6.6 Hz, 1H, HC-10), 4.85-4.80 (m, 1H, HC-3R), $4.62(d, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$, HC-3), $4.50(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-19), 4.39-4.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HC}-176), 4.27(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}-$ 2R), 4.20 (m, 2H, HC-4R, $\mathrm{H}_{\mathrm{b}} \mathrm{C}-5 R$), 4.14 ($\mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}} \mathrm{C}-5 \mathrm{R}$), 3.68-3.50 (m, 15H, $\mathrm{H}_{\mathrm{b}} \mathrm{C}-$ 175, HC-8, HC-13, HC-T $\mathrm{H}_{5,7,8,10,11,13}$), 3.50-3.40 (m, 6H, T $\mathrm{T}_{4,5,13,14}$), 3.18-3.08 (m, 4H, T 3,15), 2.91 (dd, J = 8.30, 5.35 Hz, 1H, HaC-175), 2.84-2.76 (m, 1H, HC-18), 2.65-2.34 (m, 15H, H3C-51, H3C151, $\mathrm{H}_{b} \mathrm{C}-21, \mathrm{H}_{\mathrm{a}} \mathrm{C}-132 \mathrm{H}_{\mathrm{b}} \mathrm{C}-71, \mathrm{H}_{b} \mathrm{C}-132, \mathrm{H}_{2} \mathrm{C}-32, \mathrm{H}_{3} \mathrm{C}-16 / 23 R \mathrm{~h}$), 2.26 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-11 \mathrm{~N}, \mathrm{H}_{3} \mathrm{C}-$ 10N), 2.13 (m,5H, $\mathrm{H}_{\mathrm{a}} \mathrm{C}-181, \mathrm{H}_{\mathrm{b}} \mathrm{C}-131, \mathrm{H}_{\mathrm{a}} \mathrm{C}-71, \mathrm{HC}-15 / 22 \mathrm{Rh}$), 2.08-1.78 (m, 16H, $\mathrm{H}_{\mathrm{a}} \mathrm{C}-171, \mathrm{H}_{\mathrm{a}} \mathrm{C}-$ 181, $\mathrm{H}_{\mathrm{b}} \mathrm{C}-131, \mathrm{H}_{\mathrm{a}} \mathrm{C}-71, \mathrm{H}_{\mathrm{b}} \mathrm{C}-81, \mathrm{H}_{3} \mathrm{C}-7 \mathrm{~A}, \mathrm{H}_{\mathrm{a}} \mathrm{C}-172, \mathrm{H}_{\mathrm{b}} \mathrm{C}-82, \mathrm{HC}-13 / 25 R \mathrm{~h}$), 1.74-1.64 (m,3H, $\mathrm{H}_{\mathrm{b}} \mathrm{C}-$ 31, $\mathrm{H}_{\mathrm{a}} \mathrm{C}-31, \mathrm{H}_{\mathrm{a}} \mathrm{C}-131$), 1.44 ($\mathrm{d}, \mathrm{J}=3.35 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-12 \mathrm{~A}$), 1.39-1.32 (m, 7H, $\mathrm{H}_{3} \mathrm{C}-2 \mathrm{~A}, \mathrm{H}_{3} \mathrm{C}-17 \mathrm{~B}$, $\mathrm{H}_{\mathrm{a}} \mathrm{C}-81$), 1.26 (d, J = $10.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-177$), $1.10\left(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-12 \mathrm{~B}\right), 0.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}-\right.$ 1A) ppm. ${ }^{13} \mathrm{C}$ NMR (125 MHz , MeOD-[d $\left.\mathrm{d}_{4}\right]$): $\delta=180.2,178.6,178.5,177.3,176.8,176.4,176.0$, $175.7,174.6,174.3,174.2,167.9,167.5,166.5,166.3,161.8,161.4,159.2,158.9,158.6,158.5$, $158.2,158.0,157.7,152.6,152.5,152.4,152.3,152.2,151.8,151.7,143.5,139.5,139.2,138.6$, $136.9,136.6,135.9,135.3,134.7,133.9,133.5,132.9,131.5,130.2,130.0,128.9,126.9,126.4$, $126.4,125.6,126.5,118.5,114.8,104.9,101.2,95.4,94.9,88.1,86.3,81.1,73.6,71.3,71.2$, $71.1,70.6,76.3,69.6,63.9,59.9,57.0,56.0,54.9,52.1,52.1,40.1,39.4,39.1,39.0,36.4,35.1$, $33.2,33.0,32.7,32.5,32.2,31.0,30.2,29.6,27.4,20.9,20.8,20.5,20.4,20.1,20.0,17.7,17.6$, 17.3, 16.4, 16.20, 14.0 ppm ; HRMS $\left(\mathrm{ESI}^{+}\right):[\mathrm{M}]^{2+}=1304.5040$, calculated for $\mathrm{C}_{132} \mathrm{H}_{157} \mathrm{Co}_{1} \mathrm{~N}_{23} \mathrm{O}_{22} \mathrm{P}_{1} \mathrm{Ru}_{1}=1304.5013$; IR (solid state, $\mathrm{KBr}, \mathrm{cm}^{-1}$): $\mathrm{v}_{\mathrm{C} \equiv \mathrm{C}} 2123$.

Figure S1. Atom numbering used for derivatives B_{12}-bpy/1/2/4-CBC

Figure S2. $500 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ of complex 1 (in DMSO-d6, $\boldsymbol{*}=$ solvent signal)

Figure S3. $500 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ of complex 2 (in DMSO-d6, $\boldsymbol{*}=$ solvent signal)

Figure S4. $500 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ of derivative B_{12}-bpy (in MeOD-d4, *= solvent signal)

Figure S5. $500 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ of derivative $\mathrm{B}_{12}-\mathbf{1}$ (in MeOD-d4, $\boldsymbol{*}=$ solvent signal)

Figure S6. $500 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ of derivative $\mathrm{B}_{12}-\mathbf{2}$ (in MeOD-d4, $\boldsymbol{*}=$ solvent signal)

Figure S7. $500 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ of derivative $\mathrm{B}_{12}-4-\mathrm{CBC}$ (in MeOD-d4, $\boldsymbol{*}=$ solvent signal)

Figure S8. Normalized UV-Vis spectra of A) complex 1 and derivative $B_{12}-\mathbf{1}$; B) complex 2 and derivative $B_{12}-2 ; C$) complex 3 and derivative $B_{12}-3$.

Figure S9. UV-Vis and emission spectra of $B_{12}-4-C B C$, complex 4 and of $C B C$.

Figure S10. X-ray data-based MM model of $\mathrm{B}_{12} \mathbf{- 1}$. Crystals were obtained by slow evaporation of water/methanol solution. Unfortunately, due to twinning, the structure of the derivative was only partially solved. As it appears in the figure, the bipyridine and dimethylbenzamidazole moiety are almost completely eclipsed with a measured 6.4° twist angle between their respective planes.

Figure S11. Left: Low temperature ($4^{\circ} \mathrm{C}$) incubation (1h) of $\mathrm{B}_{12}-4$-CBC with MCF7 cells and, right: Incubation (1h) at $37{ }^{\circ} \mathrm{C}$ of $\mathrm{B}_{12}-4-\mathrm{CBC}$ with the same cell line. Both Rho and Ru signals of the probe are overlapped in the corresponding brightfield image.

Figure S12. Co-localization images of lysotracker (LTB) and $\mathrm{B}_{12}-4-C B C$ in MCF7 cells after 1h of incubation at $37^{\circ} \mathrm{C}$. A) Brightfield, B) Lysotracker, C) $\mathrm{B}_{12}-4-\mathrm{CBC}$ (Overlap of the Rho and Ru emission) and D) Overlap of A, B and C.

References

[1] Slattery S.; Gokaldas N.; Mick T.; Goldsby K. Inorg. Chem. 1994, 33, 3621-3624.
[2] Zobi F.; Kromer L.; Spingler B.; Alberto R. Inorg. Chem. 2009, 48, 8965-8970.
[3] Herrero C.; Quaranta A.; El Ghachtouli S.; Vauzeilles B.; Leibl W.; Aukauloo A. Phys. Chem. Chem. Phys. 2014, 16, 12067-12072.
[4] Fedosov S.N.; Grissom C. B.; Fedosova N. U.; Moestrup S.K.; Nexø E.; Petersen T.E. FEBS J. 2006, 273, 4742-4753.

