Efficient Access to A Designer Phosphapalladacycle Catalyst via Enantioselective Catalytic Asymmetric Hydrophosphination

Xi-Rui Li, Xiang-Yuan Yang, Yongxin Li, Sumod A. Pullarkat, Pak-Hing Leung*

^[a] Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore Fax: (+65) 6791 1961; e-mail: pakhing@ntu.edu.sg.

Supporting Information

Table of Contents	S1
General Information	S2
Experimental Section	S2-7
Reference	S7
NMR Spectra	S8-20
HPLC Spectra	S21-29
Selected Bond Lengths (Å) of Complexes 12b, 13, 15 and 20	S30
Crystallographic Data	S31-46

General Information

All reactions were carried out under a positive pressure of nitrogen using standard Schlenk technique. NMR spectra were recorded on Bruker AV 300, AV500 and BBFO 400 spectrometers. Chemical shifts were reported in ppm and referenced to an internal SiMe₄ standard (0 ppm) for ¹H NMR, chloroform-*d* (77.00 ppm) for ¹³C NMR, and an external 85% H₃PO₄ for ³¹P{¹H} NMR. Acetonitrile (MeCN), dichloromethane (DCM), chloroform, *n*-hexane, acetone, ethyl acetate (EA) and methanol (MeOH) were purchased from their respective companies and used as supplied. Tetrahydrofuran (THF) was distilled from sodium/benzophenone prior to use. Solvents were degassed when necessary. A Low Temp Pairstirrer PSL-1800 was used for controlling low temperature reactions. Column chromatography was carried out with Silica gel 60 (Merck). Melting points were measured using SRS Optimelt Automated Point System SRS MPA100. Optical rotation were measured with JASCO P-1030 Polarimeter in the specified solvent in a 0.1 dm cell at 22.0°C. The

enantioselectivities of the hydrophosphination reactions were determined with Agilent 1200 Series High Performance Liquid Chromatography (HPLC) machine fitted with a Daicel Chiralpak IC column and eluted with a mixture of *n*-hexane/2-propanol at 23° C.

Figure s1. Molecular structures of PC-catalyst 1 and NC-catalyst 2.

Caution! Perchlorate salts of metal complexes are potentially explosive compounds and should be handled with care.

The PC-catalyst 1,¹ NC-catalyst 2,² benzylamine palladium complex 11^3 and unsaturated malonate 9^4 were prepared according to literature methods. All other reactants and reagents were used as supplied without further purification unless stated otherwise.

General procedure for asymmetric hydrophosphination with PC-catalyst (R)-1.

Scheme s1. Catalytic asymmetric hydrophosphination of malonate 9.

A Schlenk tube was charged with Ph₂PH (20.0 mg, 0.107 mmol, 1.0 equiv), catalyst (*R*)-1 (3.37 mg, 5.37 µmol, 5 mol%) in solvent (6 mL) and stirred at the stipulated temperature. The substrate **9** (31.9 mg, 0.118 mmol, 1.1 equiv) and NEt₃ (14.9 µL, 0.107 mmol, 1.0 equiv.) was added and stirred. The reaction was monitored for completion by ³¹P{¹H} NMR, then

allowed to warm up to RT and treated with S₈ (6.92 mg, 0.027 mmol, 0.25 equiv.). Volatiles were removed under reduced pressure and the crude product was purified by silica gel column chromatography (1 EA : 15 *n*-hexane) to afford phosphine sulfide **10'** as a white solid in 91% isolated yield. [α]_D = +10.1 (*c* 0.68, DCM, Table 1, Entry 7). Mp: 167-168°C. ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 50.9; ¹H NMR (CDCl₃, 400 MHz): δ 8.34-6.76 (m, 17H, Ar), 5.76 (dd, 1H, *J* = 10.8, 8.2 Hz, CHCOO), 4.98 (dd, 1H, *J* = 12.6, 10.8 Hz, CHP), 3.20 (s, 3H, CH₃), 3.15 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 167.6-167.2 (2C, COO), 133.4-122.6 (22C, Ar), 54.8 (d, 1C, *J* = 4.5 Hz, CH₃), 52.4 (d, 2C, *J* = 7.4 Hz, CH₃), 39.0 (d, 1C, *J* = 50.0 Hz, PCH). The *ee* was determined on a Daicel Chiralpak IC column with *n*-hexane/2-propanol = 95/5, flow = 0.5 mL/min, wavelength = 280 nm. Retention times: 66.8 min (*R*), 76.6 min (*S*).

Synthesis of complex (S)-12a

Scheme s2. Synthesis of coordination complex (*S*)-12a.

The volatiles from the crude reaction mixture containing phosphine 10 (1.0 equiv.) were removed under reduced pressure. The residue was redissolved in DCM (10 mL), dimeric complex 11 (0.5 equiv.) was added and stirred at RT for 10 mins. The organic product was extracted with DCM (3 x 50 mL), washed with H₂O (1 x 50 mL), dried over MgSO₄ and filtered. The volatiles were removed by rotary evaporator to afford 12a as a yellow solid in 99% isolated yield. $[\alpha]_{D} = -21.9 (c \ 1.33, DCM)$. ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 48.3; ¹H NMR (CDCl₃, 400 MHz): δ 7.96 (d, 1H, J = 8.6 Hz, Ar), 7.89 (dd, 2H, J = 11.1, 7.5 Hz, Ar), 7.68-7.64 (m, 3H, Ar), 7.45 (dd, 2H, *J* = 9.9, 8.4 Hz, Ar), 7.31-7.17 (m, 6H, Ar), 6.89 (td, 3H, J = 8.0, 2.0 Hz, Ar), 6.84 (d, 1H, J = 7.0 Hz, Ar), 6.63 (t, 1H, J = 7.2 Hz, Ar), 6.15 (t, 1H, J = 7.2 7.6 Hz, Ar), 6.09 (t, 1H, J = 10.6 Hz, PCH), 5.86 (t, 1H, J = 7.0 Hz, Ar), 5.53 (t, 1H, J = 10.7 Hz, $CH(CO_2CH_2)_2$), 4.48 (d, 1H, J = 13.2 Hz, NCH_2), 3.56 (s, 3H, CO_2CH_3), 3.59 (dd, 1H, J = 13.2, 3.4 Hz, NCH₂), 3.07-3.05 (m, 6H, NCH₃), 2.72 (s, 3H, CO₂CH₃); ¹³C NMR (CDCl₃, 100 Hz): δ 169.0 (s, 1C, CO₂CH₃), 168.0 (d, 1C, J = 14.9 Hz, CO₂CH₃), 152.2-121.8 (28C, Ar), 73.3 (s, 1C, NCH₂), 56.3 (d, 1C, J = 9.2 Hz, $CH(CO_2CH_3)_2$), 52.8 (s, 1C, CO_2CH_3), 52.0 (s, 1C, CO₂*C*H₃), 51.4 (s, 1C, N*C*H₃), 48.9 (s, 1C, N*C*H₃), 40.2 (d, 1C, *J* = 22.5 Hz, P*CH*). HRMS (+ESI) m/z: $(M + H)^+$ calcd for C₃₇H₃₈ClNO₄PPd, 732.1262; found, 732.1296. Anal. Calcd for C₃₇H₃₇ClNO₄PPd: C, 60.67; H, 5.09; N, 1.91. Found: C, 60.81; H, 5.56; N, 2.00%.

Synthesis of complex (S)-12b

Scheme s3. Synthesis of P-O bidentate complex (S)-12b.

The dimeric complex **11** (0.5 equiv.) was added into the crude reaction mixture containing phosphine **10** (1.0 equiv.) and stirred for 10 mins. The volatiles were removed under reduced pressure to afford the crude residue which on standing overnight, crystallized to form complex **12b** as a yellow block in 75% yield. $[\alpha]_D = -176.8 (c \ 0.59, DCM)$. Mp: 121-122°C (dec.). ³¹P{¹H} NMR (CDCl₃, 162 MHz): $\delta \ 60.2$; ¹H NMR (CDCl₃, 400 MHz): $\delta \ 8.66$ (d, 1H, $J = 7.2 \ Hz$, Ar), 8.31-8.26 (m, 2H, Ar), 7.84 (d, 1H, $J = 8.7 \ Hz$, Ar), 7.64-7.54 (m, 5H, Ar), 7.44 (t, 1H, $J = 7.7 \ Hz$, Ar), 7.17 (t, 1H, $J = 7.4 \ Hz$, Ar), 7.02 (t, 1H, $J = 7.5 \ Hz$, Ar), 6.94 (d, 1H, $J = 7.3 \ Hz$, Ar), 6.88 (t, 1H, $J = 7.5 \ Hz$, Ar), 6.83-6.78 (m, 3H, Ar), 6.63 (td, 2H, J = 7.9, 1.9 Hz, Ar), 6.39-6.29 (m, 2H, Ar), 6.33 (d, 1H, $J = 29.2 \ Hz$, PCH), 4.43 (d, 1H, $J = 13.8 \ Hz$, NCH₂), 3.72 (s, 3H, CH₃O₂C), 3.67 (dd, 1H, $J = 13.9, 3.3 \ Hz$, NCH₂), 3.56 (s, 3H, CH₃O₂C), 3.67 (dd, 1H, $J = 7.5 \ Hz$, 100 MHz): $\delta \ 172.2$ (d, $J = 2.4 \ Hz$, 1C, CO₂CH₃), 169.7 (d, $J = 7.5 \ Hz$, 1C, CO₂CH₃), 148.4-122.4 (29C, Ar), 71.1 (d, 1C, $J = 2.9 \ Hz$, NCH₂), 51.7 (s, 1C, CH₃CO₂), 50.5 (s, 1C, CH₃CO₂), 49.8 (d, 1C, $J = 2.2 \ Hz$, NCH₃), 48.8 (d, 1C, $J = 2.4 \ Hz$, NCH₃), 36.5 (d, 1C, $J = 29.2 \ Hz$, PCH). HRMS (+ESI) m/z: (M + H)⁺ calcd for C₃₇H₃₇NO₄PPd, 696.1495; found, 696.1514.

Synthesis of dimeric complex (S)-13

Scheme s4. Synthesis of dimeric complex (S)-13.

The complex **12a** (0.10 g, 136.5 µmol) or **12b** (0.10 g, 143.2 µmol), conc. HCl (0.6 mL) in acetone (6 mL) was refluxed for 90 mins. The solvent was removed, and the residue was extracted with DCM (3 x 25 mL), washed with H₂O (1 x 25 mL), dried over MgSO₄ and filtered. The volatiles were removed under reduced pressure. The crude residue and NaOAc (0.40 g) was refluxed in EtOH (20 mL) for 30 mins. After removal of the solvent, the organic layer was taken up in DCM (3 x 25 mL), washed with H₂O (1 x 25 mL), dried over MgSO₄ and filtered. The crude product was purified by column chromatography (1 DCM : 1 *n*-hexane) to afford complex **13** as a yellow solid in 92% isolated yield. Recrystallization of complex **13** was achieved from a mixture of DCM/*n*-hexane in 84% yield. [α]_D = +5.6 (*c*

0.64, DCM). Mp: 180-181°C (dec.). ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 62.9, 62.3; ¹H NMR (CDCl₃, 400 MHz): δ 8.01-7.33 (m, 16H, Ar), 5.69-5.63 (m, 1H, CHCOO), 4.38-4.33 (m, 1H, PCH), 3.2 (s, 3H, CH₃), 2.8 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 167.8 (2C, CO₂CH₃), 136.0-124.7 (22C, Ar), 53.4 (s, 2C, CO₂CH₃), 52.2 (d, 1C, *J* = 19.0 Hz, PCH). HRMS (+ESI) m/z: (M + H)⁺ calcd for C₅₆H₄₉Cl₂O₈P₂Pd₂, 1193.0349; found, 1193.0323.

Synthesis of complex (S)-14

Scheme s5. Synthesis of monomeric bisacetonitrile complex (S)-14.

The dimeric complex **13** (0.10 g, 83.7 µmol, 1.0 equiv.) and AgClO₄ (34.7 mg, 167.4 µmol, 2.0 equiv.) in MeCN (10ml) was stirred for 2 h in the dark. The reaction mixture was filtered through celite and the volatiles were removed. Extraction was performed with DCM (3 x 25 mL), the combined organic layer was washed with H₂O (1 x 25 mL), dried over MgSO₄ and filtered. The solvent was removed by rotary evaporator to give complex **14** as a yellow solid in 99% isolated yield. $[\alpha]_D = +357.7$ (*c* 0.15, DCM). Mp: 81-82°C (dec.). ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 61.5; ¹H NMR (CDCl₃, 400 MHz): δ 7.97-7.86 (m, 2H, Ar), 7.75-7.65 (m, 4H, Ar), 7.58-7.35 (m, 10H, Ar), 5.68-5.37 (m, 1H, PCH), 4.17 (dd, 1H, *J* = 17.6, 9.4 Hz, C*H*(CO₂CH₃)₂), 3.24 (s, 3H, CO₂CH₃), 2.83 (s, 3H, CO₂CH₃), 2.22 (m, 6H, NCCH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 167.2 (s, 1C, CO₂CH₃), 166.8 (d, 1C, *J* = 15.0 Hz, CO₂CH₃), 148.8-123.7 (22C, Ar), 55.3 (d, 1C, *J* = 5.6 Hz, CHCO₂CH₃), 52.3 (d, 2C, *J* = 23.7 Hz, CO₂CH₃), 48.0 (d, 1C, *J* = 38.0 Hz, PCH), 2.5 (s, 2C, NCCH₃). HRMS (+ESI) m/z: (M + H)⁺ calcd for C₃₂H₃₁ClN₂O₈PPd, 743.0541; found, 743.0546.

Synthesis of complex (*S*)-15

Scheme s6. Synthesis of monomeric bisaquo complex (S)-15.

The dimeric complex **13** (0.10 g, 83.7 µmol, 1.0 equiv.) and AgClO₄ (34.7 mg, 167.4 µmol, 2.0 equiv.) in toluene (10ml) and H₂O (1 mL) was stirred for 12 h in the dark. The reaction mixture was filtered through celite and the volatiles were removed. Extraction was performed with DCM (3 x 25 mL), the combined organic layer was washed with H₂O (1 x 25 mL), dried over MgSO₄ and filtered. The solvent was removed by rotary evaporator to give complex **15** as a white solid. Recrystallization of complex **15** was achieved from a mixture of DCM/*n*-hexane to afford (*S*)-**15** in 75% isolated yield. $[\alpha]_D = +223.0$ (*c* 0.85, DCM). ³¹P{¹H} NMR

(CDCl₃, 162 MHz): δ 63.6; ¹H NMR (CDCl₃, 400 MHz): δ 7.89-7.83 (m, 3H, Ar), 7.76-7.71 (m, 3H, Ar), 7.58-7.32 (m, 10H, Ar), 5.54 (dd, 1H, J = 13.4, 9.8 Hz, PCH), 4.34 (dd, 1H, J = 18.0, 9.7 Hz, CH(CO₂CH₃)₂), 3.82 (brs, 4H, OH₂), 3.27 (s, 3H, CO₂CH₃), 2.98 (s, 3H, CO₂CH₃); ¹³C NMR (CDCl₃, 100 MHz): δ 167.2 (s, 2C,CO₂CH₃), 135.5-124.6 (22C, Ar), 56.0 (d, 1C, J = 7.2 Hz, CH(CO₂CH₃)₂), 54.0 (s, 1C, CO₂CH₃), 52.9 (s, 1C, CO₂CH₃),47.6 (d, 1C, J = 39.2 Hz, PCH). HRMS (+ESI) m/z: (M + H)⁺ calcd for C₂₈H₂₉ClO₁₀PPd, 697.0222; found, 697.0231.

General procedure for asymmetric hydrophosphination of substrates 16 and 18

Scheme s7. Catalytic asymmetric hydrophosphination of substrates 16 and 18.

The catalyst (5.37 µmol, 5 mol %), substrate 16 or 18 (0.118 mmol, 1.1 equiv.) and NEt₃ (14.9 µL, 0.107 mmol, 1.0 equiv.) was added to a solution of Ph₂PH (20.0 mg, 0.107 mmol, 1.0 equiv) in DCM (6 mL) and stirred at -80°C. The completion of reaction was determined by the disappearance of the signal belonging to HPPh₂ (-40.0 ppm) on ${}^{31}P{}^{1}H$ NMR spectroscopy. The crude reaction mixture was treated with S_8 (6.92 mg, 0.027 mmol, 0.25 equiv.) for 10 min to form the respective products. The volatiles were removed under reduced pressure and the crude product was directly loaded onto silica gel column (1 EA : 15 nhexane) to afford the product 17 as a white solid in quantitative yields. The spectroscopic data obtained for product 17 is consistent with literature.⁵ The *ee* was determined on a Daicel Chiralpak IC column with *n*-hexane/2-propanol = 98/2, flow = 0.3 mL/min, wavelength = 270 nm. Retention times: 40.8 min ((S)-17), 56.3 min ((R)-17). The product 19 was purified by silica gel column (1 EA : 30 *n*-hexane) and obtained as a white solid in quantitative yields. $[\alpha]_{\rm D} = -62.0 \ (c \ 0.27, \ \text{DCM}).$ Mp: 107-108°C. ³¹P{¹H} NMR (CDCl₃, 162 MHz): $\delta \ 50.6$; ¹H NMR (CDCl₃, 400 MHz): δ 8.23-8.20 (m, 2H, Ar), 7.60-7.50 (m, 5H, Ar), 7.27-7.03 (m, 8H, Ar), 4.86-4.80 (m, 2H, CO₂CH₂), 3.82-3.74 (m, 2H, CO₂CH₂), 3.66-3.57 (m, 1H, PCH), 3.47-3.41 (m, 1H, CH(CO₂CH₂CH₃)₂), 1.01 (t, 3H, J = 7.1 Hz, CH₂CH₃), 0.82 (t, 3H, J = 7.1 Hz, CH₂CH₃) ¹³C NMR (CDCl₃, 100 MHz): δ 166.9 (s, 1C, O=COEt), 166.7(s, 1C, O=COEt), 133.5-127.3 (m, 15C, Ar), 61.4 (d, 2C, *J* = 14.3 Hz, *C*H₂), 53.8 (d, 1C, *J* = 4.3 Hz, *C*HPPh₂), 45.8 (d, 1C, J = 49.3 Hz, CHCOO), 13.3 (d, 2C, J = 11.9 Hz, CH₃). The *ee* was determined on a Daicel Chiralpak IC column with n-hexane/2-propanol = 98/2, flow = 1.0 mL/min, wavelength = 250 nm. Retention times: 31.4 min, 36.8 min.

Synthesis of gold(I)-phosphine complex (S)-20.

Scheme s8. Synthesis of gold(I)-phosphine complex (S)-20.

A mixture of chloro(dimethylsulfide)gold(I) chloride (29.5 mg, 0.10 mmol, 1.0 equiv.) and the phosphine ligand (*S*)-**10** (43.8 mg, 0.10 mmol, 1.0 equiv.) in DCM (20 mL) was stirred at RT for 30 min in the dark. The crude product (*S*)-**20** was purified by silica gel column chromatography (1 EA : 4 *n*-hexane) to afford complex (*S*)-**20** as a white solid in 99% isolated yield. Complex (*S*)-**20** was recrystallized from a mixture of DCM/*n*-hexane. $[\alpha]_D = -33.6$ (*c* 0.76, DCM). Mp: 177-178°C. ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 46.9; ¹H NMR (CDCl₃, 400 MHz): δ 8.11 (ddd, 2H, J = 12.8, 7.1, 2.2 Hz, Ar), 7.96 (dd, 2H, J = 11.9, 7.9 Hz, Ar), 7.66-7.58 (m, 5H, Ar), 7.42 (d, 1H, J = 7.7 Hz, Ar), 7.34-7.29 (m, 2H, Ar), 7.04 (dd, 2H, J = 12.8, 7.4 Hz, Ar), 6.92 (dd, 1H, J = 8.0, 6.3 Hz, Ar), 6.77 (td, 2H, J = 7.8, 2.6 Hz, Ar), 5.70-5.64 (m, 1H, PCH), 4.67 (t, 1H, J = 11.0 Hz, $CH(CO_2CH_3)_2$), 3.26 (s, 3H, CO_2CH_3), 3.14 (s, 3H, CO_2CH_3); ¹³C NMR (CDCl₃, 100 MHz): δ 167.2 (s, 1C, CO_2), 166.3 (d, 1C, J = 17.9 Hz, CO_2), 134.9-122.5 (22C, Ar), 56.5 (d, 1C, J = 13.3 Hz, $CH(CO_2CH_3)_2$), 52.6 (d, 2C, J = 8.2 Hz, CO_2CH_3), 36.8 (d, 1C, J = 34.7 Hz, PCH).

Reference

(1) Y. Huang, R. J. Chew, Y. Li, S. A. Pullarkat and P.-H. Leung, *Org. Lett.* 2011, **13**, 5862-5865.

(2) Y. Huang, S. A. Pullarkat, Y. Li and P.-H. Leung, Inorg. Chem. 2012, 51, 2533-2540.

(3) A. C. Cope and E. C. Friedrich, J. Am. Chem. Soc. 1968, 90, 909-913.

(4) (a) E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353-1364; (b) P. D.
Pohlhaus, S. D. Sanders, A. T. Parsons, W. Li and J. S. Johnson, J. Am. Chem. Soc. 2008, 130, 8642-8650; (c) M. Skvorcova, L. Grigorjeva and A. Jirgensons, Org. Lett. 2015, 17, 2902-2904.

(5) F. Alonso and Y. Moglie, Curr. Green Chem. 2014, 1, 87-93.

NMR Spectra

Figure s2. ³¹P{¹H} NMR spectrum of phosphine sulfide **10**'.

Figure s3. ¹H NMR spectrum of phosphine sulfide 10'.

Figure s4. ¹³C NMR spectrum of phosphine sulfide 10'.

Figure s5. ${}^{31}P{}^{1}H$ NMR spectrum of coordination complex (*S*)-12a.

Figure s6. ¹H NMR spectrum of coordination complex (*S*)-**12a**.

Figure s7. ¹³C NMR spectrum of coordination complex (*S*)-**12a**.

Figure s8. ³¹P{¹H} NMR spectrum of P-O bidentate complex (*S*)-**12b**.

Figure s9. ¹H NMR spectrum of P-O bidentate complex (*S*)-**12b**.

Figure s10. ¹³C NMR spectrum of P-O bidentate complex (*S*)-12b.

Figure s11. ${}^{31}P{}^{1}H$ NMR spectrum of dimeric complex (*S*)-13.

Figure s12. ¹H NMR spectrum of dimeric complex (*S*)-13.

Figure s13. ¹³C NMR spectrum of dimeric complex (*S*)-13.

167.2 166.7 166.7 166.7 166.7 133.8

Figure s16. ¹³C NMR spectrum of monomeric bisacetonitrile complex (*S*)-14.

Figure s17. ${}^{31}P{}^{1}H$ NMR spectrum of monomeric bisaquo complex (*S*)-15.

-2.5

Figure s19. ¹³C NMR spectrum of monomeric bisaquo complex (*S*)-15.

Figure s20. ${}^{31}P{}^{1}H$ NMR spectrum of phosphine sulfide 19.

Figure s21. ¹H NMR spectrum of phosphine sulfide 19.

Figure s22. ¹³C NMR spectrum of phosphine sulfide 19.

Figure s23. ³¹P{¹H} NMR spectrum of phosphine gold(I) complex (*S*)-**20**.

Figure s24. ¹H NMR spectrum of phosphine gold(I) complex (*S*)-**20**.

Figure s25. ¹³C NMR spectrum of phosphine gold(I) complex (*S*)-**20**.

Figure s26. ³¹P{¹H} NMR spectrum of product from coordination of (*S*)-BINAP to complex (*S*)-14.

From the coordination experiment conducted between complex (*S*)-**14** and (*S*)-BINAP, the *ee* of the PC-palladacycle complex was determined to be >99% after a single recrystallization. With reference to the ${}^{31}P{}^{1}H{}$ NMR spectrum obtained above, the three phosphorus atoms located on the coordination complex may be identified by their coupling constants and chemical shifts. If both enantiomers of the PC-palladacycle complex were present, two sets of similar signals (with different intensities based on the enantiomeric ratio of the isomers) should be obtained. Since that is not observed, it is clear that only one enantiomer of the complex is present after a single recrystallization.

HPLC Spectra

Figure s28. HPLC spectrum for phosphine sulfide 10' in Table 1 Entry 1.

Figure s29. HPLC spectrum for phosphine sulfide 10' in Table 1 Entry 2.

Figure s30. HPLC spectrum for phosphine sulfide 10' in Table 1 Entry 3.

Figure s32. HPLC spectrum for phosphine sulfide 10' in Table 1 Entry 5.

Figure s34. HPLC spectrum for phosphine sulfide 10' in Table 1 Entry 7.

Figure s36. HPLC spectrum for phosphine sulfide 10' in Table 1 Entry 9.

Figure s38. HPLC spectrum for racemic phosphine sulfide 17.

Additional Info : Peak(s) manually integrated

Figure s40. HPLC spectrum for phosphine sulfide 17 in Table 2 Entry 2.

60150

ž

 # [min]
 [mAU*s]
 [mAU]
 N

 1
 31.417
 MM
 0.8744
 4207.47168
 80.20103
 50.0008

 2
 36.806
 MM
 1.3969
 4207.33447
 50.19682
 49.9992

Figure s42. HPLC spectrum for phosphine sulfide 19 in Table 2 Entry 3.

Figure s43. HPLC spectrum for phosphine sulfide 19 in Table 2 Entry 4.

Figure s44. HPLC spectrum for phosphine sulfide 17 in Table 2 Entry 5.

Selected Bond Lengths (Å) of Complexes 12b, 13, 15 and 20

The bond lengths of the CO_2Me -moieties in complexes **12b**, **13**, **15** and **20** were collated in Table s1 below. The highlighted bond lengths of complex **12b** indicate the presence of delocalization along the O(1)-C(5)-C(6) moiety.

	1 4 OMe Fh2 F OMe F OMe S OMe S OMe S OMe S OMe S OMe S OMe S OMe S OMe S OMe S OMe S OMe S OMe S OMe S OMe S OME S O S OME S OME S O S O S O S O S O S O S O S O S O S	Me ₂ 1 5 0Me 2 Pd 7 0Me Ph ₂ Np 3 (S)-12b	3 MeO 0 ² MeO 5 6 Ph ₂ 4 10 Pd 2 (S)-13	3 MeO 0 ² MeO 5 ⁷ 6 ^{Ph2} 4 ^{Ph2} Pd OH2 CIO4 (S)-15
C5-O1	1.182(13)	1.274(5)	1.206(9), 1.202(9)	1.205(7)
C5-O4	1.352(13)	1.355(5)	1.348(8), 1.334(9)	1.336(7)
C5-C6	1.507(17)	1.397(6)	1.527(9), 1.523(9)	1.523(7)
C6-C7	1.531(16)	1.444(6)	1.527(9), 1.528(13)	1.532(17)
C7-O2	1.209(15)	1.216(5)	1.209(9), 1.206(15)	1.205(17)
C7-O3	1.316(15)	1.367(5)	1.332(9), 1.348(17)	1.340(16)

Table s1. Selected bond lengths (Å) of complexes 12b, 13, 15 and 18.

Crystallographic Data

Figure s45. ORTEP structure of chiral phosphine-gold(I) complex (S)-20.

The tertiary phosphine **10** was coordinated onto AuCl to form complex **20**. Recrystallization of the complex from a mixture of DCM/n-hexane afforded single crystals that are suitable for X-ray crystallography. The absolute configuration of the major enantiomer was determined to be *S*.

 Table s2. Data collection and structure refinement for complex (S)-20.

Chemical formula	C ₂₈ H ₂₅ AuClO ₄ P		
Formula weight	688.87 g/mol		
Temperature	103(2) K		
Wavelength	0.71073 Å		
Crystal size	0.120 x 0.320 x 0.410 mm		
Crystal habit	colorless block		
Crystal system	monoclinic		
Space group	P 1 21 1		
Unit cell dimensions	a = 9.1660(5) Å	$\alpha = 90^{\circ}$	
	b = 16.3269(8) Å	$\beta = 115.576(3)^{\circ}$	
	c = 9.5017(5) Å	$\gamma = 90^{\circ}$	
Volume	1282.62(12) Å ³		
Z	2		
Density (calculated)	1.784 g/cm^3		
Absorption coefficient	5.934 mm ⁻¹		
F(000)	672		
Theta range for data collection	2.38 to 31.16°		
Index ranges	-13<=h<=13, -23<=k<=23, -13<=l<=13		

Reflections collected	21010		
Independent reflections	7935 [R(int) = 0.1079]		
Coverage of independent reflections	99.8%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.5360 and 0.1950		
Structure solution technique	direct methods		
Structure solution program	XT, VERSION 2014/5		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Shel	drick, 2014)	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	7935 / 1 / 318		
Goodness-of-fit on F ²	0.905		
$\Delta/\sigma_{\rm max}$	0.001		
Final R indices	6509 data; I>2σ(I)	R1 = 0.0532, $wR2 = 0.1112$	
Weighting scheme	all data w=1/[$\sigma^2(F_o^2)$] where P=($F_o^2+2F_c^2$)/3	R1 = 0.0708, wR2 = 0.1219	
Absolute structure parameter	0.016(13)		
Largest diff. peak and hole	1.302 and -1.929 eÅ ⁻³		
R.M.S. deviation from mean	0.219 eÅ ⁻³		

Table s3. Bond lengths (Å) for complex (S)-20.

Au1-P1	2.235(2)	Au1-Cl1	2.283(2)
C1-C2	1.518(14)	C1-C12	1.558(14)
C1-P1	1.847(11)	C2-C3	1.371(14)
C2-C11	1.436(15)	C3-C4	1.420(17)
C4-C5	1.336(18)	C5-C6	1.380(19)
C6-C11	1.428(17)	C6-C7	1.430(18)
C7-C8	1.355(19)	C8-C9	1.390(18)
C9-C10	1.371(16)	C10-C11	1.432(16)
C12-C15	1.507(17)	C12-C13	1.531(16)
C13-O2	1.209(15)	C13-O1	1.316(15)
C14-O1	1.47(2)	C15-O3	1.182(13)
C15-O4	1.352(13)	C16-O4	1.431(15)
C17-C18	1.378(16)	C17-C22	1.395(15)
C17-P1	1.809(11)	C18-C19	1.357(16)
C19-C20	1.346(18)	C20-C21	1.401(18)
C21-C22	1.411(16)	C23-C24	1.381(14)
C23-C28	1.398(15)	C23-P1	1.826(13)
C24-C25	1.367(16)	C25-C26	1.403(19)

Table s4	. Bond	angles	(°) for	complex	(S)- 20 .
----------	--------	--------	---------	---------	------------------

P1-Au1-Cl1	178.3(2)	C2-C1-C12	108.8(8)
C2-C1-P1	111.7(7)	C12-C1-P1	113.7(8)
C3-C2-C11	119.4(11)	C3-C2-C1	119.0(10)
C11-C2-C1	121.5(9)	C2-C3-C4	120.9(11)
C5-C4-C3	119.9(11)	C4-C5-C6	121.9(12)
C5-C6-C11	120.2(12)	C5-C6-C7	122.6(12)
C11-C6-C7	117.3(12)	C8-C7-C6	123.0(12)
C7-C8-C9	119.4(12)	C10-C9-C8	121.0(12)
C9-C10-C11	121.1(12)	C6-C11-C10	118.2(11)
C6-C11-C2	117.7(10)	C10-C11-C2	124.1(11)
C15-C12-C13	111.8(9)	C15-C12-C1	106.9(9)
C13-C12-C1	113.8(9)	O2-C13-O1	125.6(12)
O2-C13-C12	122.1(11)	O1-C13-C12	112.3(10)
O3-C15-O4	124.7(11)	O3-C15-C12	125.4(11)
O4-C15-C12	109.9(9)	C18-C17-C22	118.9(10)
C18-C17-P1	120.4(8)	C22-C17-P1	120.6(9)
C19-C18-C17	121.1(11)	C20-C19-C18	121.9(12)
C19-C20-C21	119.3(11)	C20-C21-C22	119.5(10)
C17-C22-C21	119.3(11)	C24-C23-C28	119.0(10)
C24-C23-P1	122.3(8)	C28-C23-P1	118.4(8)
C25-C24-C23	121.8(10)	C24-C25-C26	119.0(11)
C27-C26-C25	120.8(13)	C26-C27-C28	119.5(11)
C23-C28-C27	119.8(9)	C13-O1-C14	114.6(13)
C15-O4-C16	114.8(9)	C17-P1-C23	105.9(5)
C17-P1-C1	106.1(5)	C23-P1-C1	104.2(5)
C17-P1-Au1	113.5(4)	C23-P1-Au1	113.9(4)
C1-P1-Au1	112.4(3)		

Figure s46. ORTEP structure of chiral phosphine-palladium complex (*S*)-**12b**.

Table s5. Data collection and structure refineme	ent for complex (S) -12	b.
--	---------------------------	----

Chemical formula	C ₃₈ H ₃₇ Cl ₃ NO ₄ PPd	
Formula weight	815.40 g/mol	
Temperature	153(2) K	
Wavelength	0.71073 Å	
Crystal size	0.380 x 0.400 x 0.420	mm
Crystal habit	colorless block	
Crystal system	monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 9.4544(4) Å	$\alpha = 90^{\circ}$
	b = 15.4951(6) Å	$\beta = 109.9464(16)^{\circ}$
	c = 12.6849(5) Å	$\gamma = 90^{\circ}$
Volume	1746.82(12) Å ³	
Z	2	
Density (calculated)	1.550 g/cm^3	
Absorption coefficient	0.849 mm^{-1}	
F(000)	832	
Theta range for data collection	1.71 to 34.03°	
Index ranges	-12<=h<=14, -24<=k<	=24, -19<=l<=19
Reflections collected	38476	
Independent reflections	14147 [R(int) = 0.0777	7]
Coverage of independent reflections	99.3%	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.7390 and 0.7170	

Structure solution technique	direct methods	
Structure solution program	XT, VERSION 2014/5	5
Refinement method	Full-matrix least-squar	tes on F^2
Refinement program	SHELXL-2014/7 (She	ldrick, 2014)
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	
Data / restraints / parameters	14147 / 1 / 437	
Goodness-of-fit on F ²	1.024	
$\Delta/\sigma_{\rm max}$	0.001	
Final R indices	11864 data; I>2σ(I)	R1 = 0.0493, wR2 = 0.1081
Weighting scheme	all data w=1/[$\sigma^2(F_o^2)$ +(0.0424H where P=(F_o^2 +2 F_c^2)/3	R1 = 0.0656, wR2 = 0.1181 P) ² +0.0709P]
Absolute structure parameter	-0.017(17)	
Largest diff. peak and hole	0.870 and -1.541 eÅ ⁻³	
R.M.S. deviation from mean	0.117 eÅ ⁻³	

Table s6. Bond lengths (Å) for complex (S)-12b.

C1-C2	1.400(6)	C1-C6	1.413(6)
C1-Pd1	1.997(4)	C2-C3	1.395(7)
C3-C4	1.367(8)	C4-C5	1.386(7)
C5-C6	1.385(7)	C6-C7	1.503(6)
C7-N1	1.480(6)	C8-N1	1.471(6)
C9-N1	1.487(6)	C10-C11	1.384(7)
C10-C15	1.390(6)	C10-P1	1.823(4)
C11-C12	1.391(7)	C12-C13	1.376(8)
C13-C14	1.386(8)	C14-C15	1.392(7)
C16-C21	1.388(7)	C16-C17	1.390(6)
C16-P1	1.827(4)	C17-C18	1.395(6)
C18-C19	1.385(8)	C19-C20	1.384(7)
C20-C21	1.378(7)	C22-C23	1.510(6)
C22-C28	1.520(6)	C22-P1	1.849(4)
C23-C24	1.397(6)	C23-C26	1.444(6)
C24-O1	1.274(5)	C24-O2	1.355(5)
C25-O2	1.430(6)	C26-O3	1.216(5)
C26-O4	1.367(5)	C27-O4	1.432(6)
C28-C29	1.374(6)	C28-C33	1.445(6)
C29-C30	1.413(7)	C30-C31	1.360(7)
C31-C32	1.422(7)	C32-C37	1.410(7)
C32-C33	1.430(7)	C33-C34	1.420(7)
C34-C35	1.374(7)	C35-C36	1.419(8)

C36-C37	1.350(9)	C38-Cl3	1.739(6)
C38-Cl1	1.746(5)	C38-Cl2	1.777(6)
N1-Pd1	2.144(3)	O1-Pd1	2.123(3)
P1-Pd1	2.2277(10)		

Table s7. Bond angles (°) for complex (S)-12b.

C2-C1-C6	117.4(4)	C2-C1-Pd1	130.7(3)
C6-C1-Pd1	111.8(3)	C3-C2-C1	120.9(4)
C4-C3-C2	120.8(5)	C3-C4-C5	119.3(5)
C6-C5-C4	121.1(5)	C5-C6-C1	120.4(4)
C5-C6-C7	121.6(4)	C1-C6-C7	117.9(4)
N1-C7-C6	108.8(4)	C11-C10-C15	119.3(4)
C11-C10-P1	119.3(3)	C15-C10-P1	121.1(4)
C10-C11-C12	120.0(5)	C13-C12-C11	120.7(5)
C12-C13-C14	119.8(5)	C13-C14-C15	119.8(5)
C10-C15-C14	120.5(5)	C21-C16-C17	119.1(4)
C21-C16-P1	117.9(3)	C17-C16-P1	123.0(3)
C16-C17-C18	120.0(4)	C19-C18-C17	120.1(4)
C20-C19-C18	119.7(4)	C21-C20-C19	120.2(4)
C20-C21-C16	120.8(4)	C23-C22-C28	116.0(3)
C23-C22-P1	113.6(3)	C28-C22-P1	109.8(3)
C24-C23-C26	126.1(4)	C24-C23-C22	119.5(4)
C26-C23-C22	114.3(4)	O1-C24-O2	116.1(4)
O1-C24-C23	126.4(4)	O2-C24-C23	117.5(4)
O3-C26-O4	120.3(4)	O3-C26-C23	124.0(4)
O4-C26-C23	115.7(4)	C29-C28-C33	118.5(4)
C29-C28-C22	121.8(4)	C33-C28-C22	119.7(4)
C28-C29-C30	121.9(4)	C31-C30-C29	121.1(5)
C30-C31-C32	119.5(4)	C37-C32-C31	120.4(5)
C37-C32-C33	119.4(5)	C31-C32-C33	120.1(4)
C34-C33-C32	117.4(4)	C34-C33-C28	123.8(4)
C32-C33-C28	118.7(4)	C35-C34-C33	121.7(5)
C34-C35-C36	119.5(5)	C37-C36-C35	120.4(5)
C36-C37-C32	121.4(5)	Cl3-C38-Cl1	111.8(3)
Cl3-C38-Cl2	110.1(3)	Cl1-C38-Cl2	109.9(3)
C8-N1-C7	109.4(4)	C8-N1-C9	109.6(4)
C7-N1-C9	109.9(4)	C8-N1-Pd1	115.4(3)
C7-N1-Pd1	105.2(2)	C9-N1-Pd1	107.3(3)
C24-O1-Pd1	133.6(3)	C24-O2-C25	116.7(4)
C26-O4-C27	114.7(4)	C10-P1-C16	106.2(2)

- /
4)
5)
)

Figure s47. ORTEP structure of chiral phosphine-palladium complex (*S*)-13.

 Table s8. Data collection and structure refinement for complex (S)-13.

$C_{57}H_{50}Cl_4O_8P_2Pd_2$	
1279.51 g/mol	
103(2) K	
1.54178 Å	
0.060 x 0.140 x 0.160 n	nm
yellow block	
monoclinic	
P 1 21 1	
a = 10.97000(10) Å	$\alpha = 90^{\circ}$
b = 19.8122(2) Å	$\beta = 108.4988(6)^{\circ}$
c = 12.56070(10) Å	$\gamma = 90^{\circ}$
2588.89(4) Å ³	
2	
1.641 g/cm^3	
8.553 mm^{-1}	
1292	
3.71 to 67.52°	
-12<=h<=13, -23<=k<=	=23, -14<=l<=14
29310	
8900 [R(int) = 0.0486]	
97.8%	
Multi-Scan	
0.6280 and 0.3420	
direct methods	
XT, VERSION 2014/5	
	C ₅₇ H ₅₀ Cl ₄ O ₈ P ₂ Pd ₂ 1279.51 g/mol 103(2) K 1.54178 Å 0.060 x 0.140 x 0.160 m yellow block monoclinic P 1 21 1 a = 10.97000(10) Å b = 19.8122(2) Å c = 12.56070(10) Å 2588.89(4) Å ³ 2 1.641 g/cm ³ 8.553 mm ⁻¹ 1292 3.71 to 67.52° -12<=h<=13, -23<=k<= 29310 8900 [R(int) = 0.0486] 97.8% Multi-Scan 0.6280 and 0.3420 direct methods XT, VERSION 2014/5

Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	8900 / 200 / 701		
Goodness-of-fit on F ²	1.063		
Final R indices	8525 data; I>2σ(I)	R1 = 0.0325, wR2 = 0.0816	
Weighting scheme	all data w=1/[$\sigma^2(F_0^2)$ +(0.0422P where P=(F_0^2 +2 F_0^2)/3	R1 = 0.0340, wR2 = 0.0829	
A hsolute structure parameter	0.013(8)		
I argest diff neak and hole	0.587 and -1.454 $e^{\Delta^{-3}}$		
R.M.S. deviation from mean	$0.142 \text{ e}\text{\AA}^{-3}$		

 Table s9. Bond lengths (Å) for complex (S)-13.

C1-C10	1.380(9)	C1-C2	1.427(9)
C1-Pd1	2.001(6)	C2-C3	1.370(10)
C3-C4	1.424(11)	C4-C5	1.409(10)
C4-C9	1.433(9)	C5-C6	1.362(11)
C6-C7	1.408(11)	C7-C8	1.374(11)
C8-C9	1.411(10)	C9-C10	1.430(9)
C10-C11	1.518(8)	C11-C12	1.555(10)
C11-P1	1.855(6)	C12-C13	1.527(9)
C12-C15	1.527(9)	C13-O2	1.206(9)
C13-O1	1.348(8)	C14-O1	1.452(9)
C15-O4	1.209(9)	C15-O3	1.332(9)
C16-O3	1.468(9)	C17-C18	1.393(10)
C17-C22	1.396(10)	C17-P1	1.822(6)
C18-C19	1.409(10)	C19-C20	1.377(11)
C20-C21	1.381(11)	C21-C22	1.394(10)
C23-C28	1.391(10)	C23-C24	1.396(10)
C23-P1	1.816(7)	C24-C25	1.393(11)
C25-C26	1.382(11)	C26-C27	1.388(11)
C27-C28	1.402(11)	C29-C38	1.387(10)
C29-C30	1.421(9)	C29-Pd2	2.017(7)
C30-C31	1.378(10)	C31-C32	1.416(10)
C32-C33	1.413(10)	C32-C37	1.429(10)
C33-C34	1.376(10)	C34-C35	1.410(10)
C35-C36	1.380(10)	C36-C37	1.413(10)
C37-C38	1.436(10)	C38-C39	1.506(9)
C39-C40	1.564(9)	C39-P2	1.851(6)

C40-C41A	1.52(2)	C40-C43	1.523(9)
C40-C41	1.528(13)	C41-O6	1.206(15)
C41-O5	1.348(17)	C42-O5	1.470(14)
C41A-O6A	1.20(2)	C41A-O5A	1.33(2)
C42A-O5A	1.47(2)	C43-O8	1.202(9)
C43-O7	1.334(9)	C44-O7	1.444(9)
C45-C46	1.388(11)	C45-C50	1.390(10)
C45-P2	1.804(7)	C46-C47	1.403(11)
C47-C48	1.389(13)	C48-C49	1.392(12)
C49-C50	1.381(11)	C51-C52	1.408(10)
C51-C56	1.421(10)	C51-P2	1.797(7)
C52-C53	1.379(10)	C53-C54	1.404(11)
C54-C55	1.398(11)	C55-C56	1.375(11)
C57-Cl4	1.755(10)	C57-Cl3	1.763(8)
Cl1-Pd1	2.4300(15)	Cl1-Pd2	2.4322(15)
Cl2-Pd2	2.4461(17)	Cl2-Pd1	2.4521(14)
P1-Pd1	2.1983(16)	P2-Pd2	2.2008(17)
Pd1-Pd2	2.9813(6)		

Table s10. Bond angles (°) for complex (S)-13.

C10-C1-C2	119.4(6)	C10-C1-Pd1	123.2(4)
C2-C1-Pd1	117.3(5)	C3-C2-C1	120.9(6)
C2-C3-C4	120.9(6)	C5-C4-C3	121.3(6)
C5-C4-C9	119.8(6)	C3-C4-C9	118.9(6)
C6-C5-C4	121.6(7)	C5-C6-C7	119.3(7)
C8-C7-C6	120.5(7)	C7-C8-C9	121.9(6)
C8-C9-C10	124.4(6)	C8-C9-C4	116.9(6)
C10-C9-C4	118.7(6)	C1-C10-C9	121.2(5)
C1-C10-C11	117.9(5)	C9-C10-C11	120.7(5)
C10-C11-C12	116.6(6)	C10-C11-P1	102.2(4)
C12-C11-P1	109.6(4)	C13-C12-C15	110.7(5)
C13-C12-C11	111.8(5)	C15-C12-C11	109.7(5)
O2-C13-O1	124.2(6)	O2-C13-C12	124.4(6)
O1-C13-C12	111.4(6)	O4-C15-O3	125.1(6)
O4-C15-C12	124.9(6)	O3-C15-C12	110.0(6)
C18-C17-C22	119.5(6)	C18-C17-P1	118.6(5)
C22-C17-P1	121.8(5)	C17-C18-C19	119.8(6)
C20-C19-C18	119.9(7)	C19-C20-C21	120.5(6)
C20-C21-C22	120.2(6)	C21-C22-C17	120.0(6)
C28-C23-C24	120.2(6)	C28-C23-P1	122.1(6)

C24-C23-P1	117.6(5)	C25-C24-C23	120.0(7)
C26-C25-C24	119.6(7)	C25-C26-C27	121.1(7)
C26-C27-C28	119.5(7)	C23-C28-C27	119.6(7)
C38-C29-C30	120.0(6)	C38-C29-Pd2	122.2(5)
C30-C29-Pd2	117.7(5)	C31-C30-C29	120.2(6)
C30-C31-C32	121.3(6)	C33-C32-C31	121.3(6)
C33-C32-C37	119.6(6)	C31-C32-C37	119.0(6)
C34-C33-C32	120.5(6)	C33-C34-C35	120.4(6)
C36-C35-C34	120.1(6)	C35-C36-C37	121.0(6)
C36-C37-C32	118.3(6)	C36-C37-C38	122.8(6)
C32-C37-C38	118.8(6)	C29-C38-C37	120.4(6)
C29-C38-C39	118.2(6)	C37-C38-C39	121.4(6)
C38-C39-C40	113.4(5)	C38-C39-P2	101.7(4)
C40-C39-P2	109.1(4)	C41A-C40-C43	108.(2)
C43-C40-C41	109.9(10)	C41A-C40-C39	115.(4)
C43-C40-C39	110.3(5)	C41-C40-C39	112.0(17)
O6-C41-O5	123.3(15)	O6-C41-C40	125.4(16)
O5-C41-C40	111.1(14)	C41-O5-C42	113.4(14)
O6A-C41A-O5A	129.(3)	O6A-C41A-C40	120.(3)
O5A-C41A-C40	111.(2)	C41A-O5A-C42A	115.(3)
O8-C43-O7	125.0(6)	O8-C43-C40	124.8(6)
O7-C43-C40	110.1(6)	C46-C45-C50	119.4(7)
C46-C45-P2	116.7(5)	C50-C45-P2	123.7(6)
C45-C46-C47	120.1(7)	C48-C47-C46	119.8(7)
C47-C48-C49	119.7(7)	C50-C49-C48	120.3(8)
C49-C50-C45	120.6(7)	C52-C51-C56	118.5(6)
C52-C51-P2	120.9(5)	C56-C51-P2	120.6(5)
C53-C52-C51	120.6(7)	C52-C53-C54	120.2(7)
C55-C54-C53	119.9(7)	C56-C55-C54	120.1(7)
C55-C56-C51	120.7(7)	Cl4-C57-Cl3	111.7(5)
Pd1-Cl1-Pd2	75.64(4)	Pd2-Cl2-Pd1	74.98(4)
C13-O1-C14	115.1(6)	C15-O3-C16	115.0(7)
C43-O7-C44	114.6(6)	C23-P1-C17	105.5(3)
C23-P1-C11	106.7(3)	C17-P1-C11	109.8(3)
C23-P1-Pd1	115.2(2)	C17-P1-Pd1	115.1(2)
C11-P1-Pd1	104.1(2)	C51-P2-C45	103.8(3)
C51-P2-C39	108.8(3)	C45-P2-C39	107.5(3)
C51-P2-Pd2	118.8(2)	C45-P2-Pd2	113.3(2)
C39-P2-Pd2	104.2(2)	C1-Pd1-P1	79.93(18)
C1-Pd1-Cl1	95.85(18)	P1-Pd1-Cl1	170.35(6)
C1-Pd1-Cl2	177.2(2)	P1-Pd1-Cl2	100.86(5)

83.78(5)	C1-Pd1-Pd2	129.3(2)
124.43(4)	Cl1-Pd1-Pd2	52.21(4)
52.42(4)	C29-Pd2-P2	80.3(2)
175.41(19)	P2-Pd2-Cl1	97.72(6)
98.5(2)	P2-Pd2-Cl2	174.15(6)
83.86(5)	C29-Pd2-Pd1	132.32(19)
124.32(4)	Cl1-Pd2-Pd1	52.15(4)
52.60(3)		
	83.78(5) 124.43(4) 52.42(4) 175.41(19) 98.5(2) 83.86(5) 124.32(4) 52.60(3)	83.78(5)C1-Pd1-Pd2124.43(4)Cl1-Pd1-Pd252.42(4)C29-Pd2-P2175.41(19)P2-Pd2-Cl198.5(2)P2-Pd2-Cl283.86(5)C29-Pd2-Pd1124.32(4)Cl1-Pd2-Pd152.60(3)

Figure s48. ORTEP structure of chiral phosphine-palladium complex (S)-15.

Table s11. Data collection and structure refinement for complex (S)	-13.
---	------

Chemical formula	C ₂₈ H ₃₀ ClO ₁₁ PPd	
Formula weight	715.34 g/mol	
Temperature	103(2) K	
Wavelength	1.54178 Å	
Crystal size	0.080 x 0.100 x 0.200 m	m
Crystal habit	colorless block	
Crystal system	orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 10.62424(9) Å	$\alpha = 90^{\circ}$
	b = 10.81406(10) Å	$\beta = 90^{\circ}$
	c = 25.3404(2) Å	$\gamma = 90^{\circ}$
Volume	2911.39(4) Å ³	
Z	4	
Density (calculated)	1.632 g/cm^3	
Absorption coefficient	7.035 mm ⁻¹	
F(000)	1456	
Theta range for data collection	3.49 to 67.38°	
Index ranges	-12<=h<=12, -12<=k<=	11, -29<=l<=30
Reflections collected	14284	
Independent reflections	5015 [R(int) = 0.0321]	
Coverage of independent reflections	99.0%	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.6030 and 0.3340	
Structure solution technique	direct methods	
Structure solution program	XT, VERSION 2014/5	

Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)		
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	5015 / 953 / 562		
Goodness-of-fit on F ²	1.023		
$\Delta/\sigma_{\rm max}$	0.001		
Final R indices	4886 data; I>2σ(I)	R1 = 0.0308, $wR2 = 0.0822$	
Weighting scheme	all data w=1/[$\sigma^2(F_o^2)$ +(0.0564P where P=(F_o^2 +2 F_c^2)/3	R1 = 0.0314, wR2 = 0.0826 p^2]	
Absolute structure parameter	0.011(4)		
Largest diff. peak and hole	0.435 and -1.178 eÅ ⁻³		
R.M.S. deviation from mean	0.153 eÅ ⁻³		

Table s12. Bond lengths (Å) for complex (S)-15.

Pd1-C1	1.997(6)	Pd1-O1	2.172(4)
Pd1-P1	2.1786(12)	Pd1-O2	2.205(4)
C1-C10	1.385(8)	C1-C2	1.418(7)
C2-C3	1.362(9)	C3-C4	1.422(9)
C4-C9	1.424(9)	C4-C5	1.429(9)
C5-C6	1.382(10)	C6-C7	1.396(11)
C7-C8	1.379(9)	C8-C9	1.424(9)
C9-C10	1.438(8)	C10-C11	1.504(8)
C11-C12	1.543(7)	C11-P1	1.857(6)
C12-C13	1.523(7)	C12-C15A	1.528(14)
C12-C15	1.532(17)	C13-O5	1.205(7)
C13-O6	1.336(7)	C14-O6	1.451(7)
C15-O3	1.205(17)	C15-O4	1.340(16)
C16-O4	1.456(15)	C15A-O3A	1.205(14)
C15A-O4A	1.337(13)	C16A-O4A	1.454(14)
C17-C18	1.396(12)	C17-C22	1.421(12)
C17-P1	1.809(9)	C18-C19	1.371(13)
C19-C20	1.401(14)	C20-C21	1.399(14)
C21-C22	1.398(12)	C23-C28	1.396(13)
C23-C24	1.397(13)	C23-P1	1.809(8)
C24-C25	1.385(11)	C25-C26	1.390(14)
C26-C27	1.365(14)	C27-C28	1.397(12)
C17A-C18A	1.39	C17A-C22A	1.39
C17A-P1	1.788(11)	C18A-C19A	1.39
C19A-C20A	1.39	C20A-C21A	1.39

1.39	C23A-C24A	1.371(18)
1.408(19)	C23A-P1	1.836(12)
1.391(19)	C25A-C26A	1.39(2)
1.366(18)	C27A-C28A	1.401(16)
1.410(10)	Cl1-07	1.425(10)
1.436(8)	Cl1-O10	1.469(9)
1.410(17)	Cl1A-O9A	1.426(15)
1.438(17)	Cl1A-O10A	1.455(16)
	1.39 1.408(19) 1.391(19) 1.366(18) 1.410(10) 1.436(8) 1.410(17) 1.438(17)	1.39C23A-C24A1.408(19)C23A-P11.391(19)C25A-C26A1.366(18)C27A-C28A1.410(10)C11-O71.436(8)C11-O101.410(17)C11A-O9A1.438(17)C11A-O10A

Table s13. Bond angles (°) for complex (S)-15.

C1-Pd1-O1	95.30(19)	C1-Pd1-P1	79.32(15)
O1-Pd1-P1	173.80(12)	C1-Pd1-O2	173.14(19)
O1-Pd1-O2	89.05(15)	P1-Pd1-O2	96.60(11)
C10-C1-C2	120.2(5)	C10-C1-Pd1	121.9(4)
C2-C1-Pd1	117.7(4)	C3-C2-C1	120.3(5)
C2-C3-C4	121.3(5)	C3-C4-C9	119.3(5)
C3-C4-C5	121.0(6)	C9-C4-C5	119.8(6)
C6-C5-C4	119.6(7)	C5-C6-C7	121.1(6)
C8-C7-C6	120.2(7)	C7-C8-C9	121.3(7)
C8-C9-C4	118.0(5)	C8-C9-C10	123.6(6)
C4-C9-C10	118.3(6)	C1-C10-C9	120.5(5)
C1-C10-C11	118.3(5)	C9-C10-C11	121.2(5)
C10-C11-C12	116.4(4)	C10-C11-P1	99.9(4)
C12-C11-P1	112.4(3)	C13-C12-C15A	109.8(9)
C13-C12-C15	107.4(11)	C13-C12-C11	110.3(4)
C15A-C12-C11	105.6(11)	C15-C12-C11	116.0(13)
O5-C13-O6	125.1(5)	O5-C13-C12	124.9(5)
O6-C13-C12	110.0(4)	O3-C15-O4	124.(2)
O3-C15-C12	125.(2)	O4-C15-C12	110.3(15)
C15-O4-C16	116.6(12)	O3A-C15A-O4A	124.4(17)
O3A-C15A-C12	124.3(18)	O4A-C15A-C12	111.3(12)
C15A-O4A-C16A	115.9(11)	C18-C17-C22	119.9(8)
C18-C17-P1	125.4(10)	C22-C17-P1	114.7(10)
C19-C18-C17	120.7(10)	C18-C19-C20	119.8(10)
C21-C20-C19	120.6(9)	C22-C21-C20	119.8(9)
C21-C22-C17	118.9(10)	C28-C23-C24	120.0(7)
C28-C23-P1	118.3(7)	C24-C23-P1	121.7(7)
C25-C24-C23	120.2(8)	C24-C25-C26	119.3(8)
C27-C26-C25	121.1(8)	C26-C27-C28	120.5(9)
C23-C28-C27	119.0(8)	C18A-C17A-C22A	120.0

C18A-C17A-P1	117.7(12)	C22A-C17A-P1	122.2(12)
C19A-C18A-C17A	120.0	C18A-C19A-C20A	120.0
C21A-C20A-C19A	120.0	C22A-C21A-C20A	120.0
C21A-C22A-C17A	120.0	C24A-C23A-C28A	120.9(12)
C24A-C23A-P1	119.6(12)	C28A-C23A-P1	119.5(10)
C23A-C24A-C25A	118.9(14)	C26A-C25A-C24A	120.7(15)
C27A-C26A-C25A	120.8(14)	C26A-C27A-C28A	119.6(13)
C27A-C28A-C23A	119.1(12)	C13-O6-C14	115.5(5)
O9-Cl1-O7	111.5(8)	O9-Cl1-O8	110.4(7)
O7-Cl1-O8	108.8(7)	O9-Cl1-O10	107.9(7)
O7-Cl1-O10	109.9(7)	O8-Cl1-O10	108.2(6)
08A-Cl1A-O9A	113.4(15)	08A-Cl1A-07A	116.2(16)
09A-Cl1A-07A	105.3(13)	08A-Cl1A-O10A	106.9(15)
O9A-Cl1A-O10A	109.0(12)	07A-Cl1A-O10A	105.7(15)
C17-P1-C23	106.8(6)	C17A-P1-C23A	105.9(9)
C17A-P1-C11	112.6(5)	C17-P1-C11	111.8(4)
C23-P1-C11	97.4(4)	C23A-P1-C11	111.9(6)
C17A-P1-Pd1	114.7(6)	C17-P1-Pd1	112.8(4)
C23-P1-Pd1	123.3(3)	C23A-P1-Pd1	108.3(5)
C11-P1-Pd1	103.51(16)		