New β -CdTeO₃ Polymorph with related structure to α -CdTeO₃

Morgane Poupon, Nicolas Barrier*, Sebastien Petit, Sophie Boudin

Laboratoire CRISMAT, UMR 6508 CNRS ENSICAEN, 6 bd Maréchal Juin 14050 CAEN Cedex 4, France.

Figure s1. SEM image of a polycrystalline sample of $\beta\text{-CdTeO}_3$

	concentration (%-atomic)										
Element	crystallite										
	1	1 2 3 av									
Cd-L	48.9	51.9	50.8	50.5							
Te-L	51.1	48.1	49.8	49.7							

Table s1. EDX quantitative analyses on $\beta\text{-CdTeO}_3$ cristallites

Atom 1	Atom 2	Distance (Å)	Atom 1	Atom 2	Distance (Å)
Cd1	05	2.1967(57)	Cd2	O6	2.2842(60)
	06	2.2883(53)		03	2.2931(64)
	04	2.3068(60)		04	2.2952(53)
	01	2.3192(64)		03	2.3178(61)
	03	2.4327(61)		01	2.3482(61)
	05	2.4761(55)		02	2.3645(60)
Te1	02	1.8687(73)	Te2	O6	1.8687(56)
	04	1.8822(52)		01	1.8877(52)
	05	1.8942(62)		03	1.9160(62)
	05	2.7628(63)		02	2.5456(73)
				01	2.7541(59)

Table s2. Selected interatomic distances for α -CdTeO₃ calculated from the ICSD file number 60067.

Figure s2. TG (blue) and DSC (brown) curves of β -CdTeO₃.

Common Subgroup H								Brand	$ch G_1 > H$	Branch G ₂ > H	
N	LEVEL	HM Symbol	P _H	Z _H	ITA	i ₁	it1	ikı	i ₂	it ₂	ik ₂
1	(1,1)	P21/c	2/m	16	14	2	2	1	2	1	2
2	(2,2)	Рс	m	16	7	4	4	1	4	2	2
3	(2,2)	P2 ₁	2	16	4	4	4	1	4	2	2
4	(2,2)	<i>P</i> -1	-1	16	2	4	4	1	4	2	2
5	(3,3)	<i>P</i> 1	1	16	1	8	8	1	8	4	2

Table s3. Common subgroups of space groups *Pnma* (G_1 ; $Z_1 = 16$) and *P*21/*c* (G_2 ; $Z_2 = 8$) with maximum cell multiplication (for both branches) of 2.

Table s4. Group-subgroup relations for transition path with $P2_1/c$ (Z_H =16) as common subgroup

Unit cells (a,b,c,α,β,γ)	Branch (P,p)		Transformation matrix				
G ₁ > H ₁			[0	0	1][0]
G ₁ : 7.45877 14.52241 11.04631 90 90 90	$Pnma > P2_1/c$ (index 2)	b,c,a	[1	0	0][0]
H ₁ : 14.5224 11.0463 7.4588 90 90 90.00			[0	1	0][0]
G ₂ > H ₂			[2	0	0][1]
G ₂ : 7.790 11.253 7.418 90.000 113.5 90.000	$P2_{1}/c > P2_{1}/c$ (index 2)	2a+c+1,b,c+1/2	[0	1	0][0]
H ₂ : 14.3386 11.2530 7.4180 90 85.18 90.00			[1	0	1][1/2]

WP Atom in β'CdTeO ₃		Atom in $\beta'CdTeO_3$	Coordinates (<i>x,y,z</i>) in S ₁ : β'CdTeO ₃	Atom in α'CdTeO ₃	Coordinates (x,y,z) in S₂: α'CdTeO₃	Related atom in α- CdTeO₃
4e	(x,y,z)	Cd1	(0.633060,0.980030,0.283140)	Cd1	(0.634950,0.008900,0.174650)	Cd1
4e	(x,y,z)	Cd1_2	(0.133060,0.019970,0.716860)	Cd1_2	(0.134950,0.008900,0.674650)	Cd1
4e	(x,y,z)	Cd2	(0.500670,0.232930,0.464830)	Cd2	(0.502100,0.267300,0.472900)	Cd2
4e	(x,y,z)	Cd2_2	(0.000670,0.767070,0.535170)	Cd2_2	(0.997900,0.767300,0.527100)	Cd2
4e	(x,y,z)	Te1	(0.250000,0.766370,0.690900)	Te1	(0.247200,0.755500,0.632200)	Te1
4e	(x,y,z)	Te2	(0.914980,0.500160,0.305940)	Te2	(0.916400,0.499200,0.322200)	Te2
4e	(x,y,z)	Te2_2	(0.414980,0.499840,0.694060)	Te2_2	(0.416400,0.499200,0.822200)	Te2
4e	(x,y,z)	Te3	(0.750000,0.770050,0.574700)	Te3	(0.747200,0.744500,0.632200)	Te1
4e	(x,y,z)	01	(0.508000,0.368400,0.231300)	01	(0.476800,0.409600,0.137700)	01
4e	(x,y,z)	01_2	(0.008000,0.631600,0.768700)	01_2	(0.004100,0.630300,0.759100)	03
4e	(x,y,z)	02	(0.519200,0.092800,0.137800)	02	(0.495900,0.130300,0.240900)	03
4e	(x,y,z)	02_2	(0.019200,0.907200,0.862200)	02_2	(0.023200,0.909600,0.862300)	01
4e	(x,y,z)	03	(0.595000,0.574300,0.087600)	03	(0.598000,0.424900,0.397800)	O6
4e	(x,y,z)	03_2	(0.095000,0.425700,0.912400)	03_2	(0.098000,0.424900,0.897800)	O6
4e	(x,y,z)	04	(0.750000,0.097400,0.151600)	04	(0.756400,0.127000,0.184500)	05
4e	(x,y,z)	05	(0.347400,0.674300,0.059300)	05	(0.350200,0.680100,0.994800)	02
4e	(x,y,z)	05_2	(0.847400,0.325700,0.940700)	05_2	(0.849800,0.331100,0.979800)	04
4e	(x,y,z)	O6	(0.250000,0.343900,0.160000)	O6	(0.256400,0.373000,0.184500)	05
4e	(x,y,z)	07	(0.649200,0.833700,0.014100)	07	(0.650200,0.831100,0.020200)	04
4e	(x,y,z)	07_2	(0.149200,0.166300,0.985900)	07_2	(0.149800,0.180100,0.005200)	02

Table s5. Mappings of the at	coms between β	'-CdTeO3 (S1)	and α' -CdTeO3 (S2)

Weekoff Desitions		Atom	Atomic Displacements						
vvyckoli	Positions	Atom	u _x	u _y	uz	u (Å)			
4e	(x,y,z)	Cd1	0.0019	0.0289	-0.1085	0.8702			
4e	(x,y,z)	Cd1_2	0.0019	-0.0111	-0.0422	0.3389			
4e	(x,y,z)	Cd2	0.0014	0.0344	0.0081	0.385			
4e	(x,y,z)	Cd2_2	-0.0028	0.0002	-0.0081	0.0724			
4e	(x,y,z)	Te1	-0.0028	-0.0109	-0.0587	0.4558			
4e	(x,y,z)	Te2	0.0014	-0.001	0.0163	0.1235			
4e	(x,y,z)	Te2_2	0.0014	-0.0006	0.1281	0.956			
4e	(x,y,z)	Te3	-0.0028	-0.0255	0.0575	0.515			
4e	(x,y,z)	01	-0.0312	0.0412	-0.0936	0.9486			
4e	(x,y,z)	01_2	-0.0039	-0.0013	-0.0096	0.0924			
4e	(x,y,z)	02	-0.0233	0.0375	0.1031	0.9367			
4e	(x,y,z)	02_2	0.004	0.0024	0.0001	0.0639			
4e	(x,y,z)	03	0.003	-0.1494	0.3102	2.8423			
4e	(x,y,z)	03_2	0.003	-0.0008	-0.0146	0.1176			
4e	(x,y,z)	04	0.0064	0.0296	0.0329	0.4192			
4e	(x,y,z)	05	0.0028	0.0058	-0.0645	0.487			
4e	(x,y,z)	05_2	0.0024	0.0054	0.0391	0.2997			
4e	(x,y,z)	06	0.0064	0.0291	0.0245	0.3813			
4e	(x,y,z)	07	0.001	-0.0026	0.0061	0.0557			
4e	(x,y,z)	07_2	0.0006	0.0138	0.0193	0.2098			

Table s6. Atomic displacements for the transition path of $\beta'CdTeO_3$ (S1) in $\alpha'CdTeO_3$ (S2)