Supporting Information

Freeze-Dried MoS₂ Sponge Electrodes for Enhanced Electrochemical Energy Storage

Suresh Kannan Balasingam, ‡^{a,} Minoh Lee,§^b Byung Hoon Kim,^c Jae Sung Lee,^b and

Yongseok Jun*a

^a Department of Materials Chemistry and Engineering, Konkuk University, Seoul 05029, Republic of Korea. Phone: +82-2450-0440; E-mail: yjun@konkuk.ac.kr

^b School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

^c Department of Physics, Incheon National University, Incheon 406-772, Republic of Korea.

‡ <u>Present Address</u>: Department of Materials Science and Engineering, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway. E-mail: suresh.k.balasingam@ntnu.no § <u>Present Address</u>: Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

.....

*Corresponding author

SEM Images

Figure S1. Scanning electron microscopic images of hydrothermally synthesized MoS_2 material. a-d) shows the various magnification of agglomerated MoS_2 microparticles obtained by normal air-drying method. e-f) displays various magnification of high surface area MoS_2 sponge electrodes obtained by freeze-drying method. For comparison purpose, almost same scale bar is used.

X-ray Photoelectron Spectra (XPS):

Figure S2. a) Survey spectrum of the freeze-dried MoS_2 sponge material. High resolution X-ray photoelectron spectra of (b) Mo 3d region and (c) S 2p region.

Binding energy (eV)

Binding energy (eV)

Table	S1.	Electrochemical	performance	comparison	of	freeze-dried	MoS ₂	sponge
electrodes with other transition metal dichalcogenides.								

S1.	Electrode material	Experimental	Specific	Specific	Ref.
No		Conditions	capacitance	capacitance of	
				freeze-dried	
				$MoS_2 *$	
1	Mesoporous MoS ₂	CV-1 mV s ⁻¹	403 F g ⁻¹	510 F g ⁻¹	1
	nanostructure			$(CV-2 \text{ mV s}^{-1})$	
2	MoS ₂ nanowall films	CV-1 mV s ⁻¹	100 F g ⁻¹	510 F g ⁻¹	2
				$(CV-2 \text{ mV s}^{-1})$	
3	MoS ₂ monolayers	CV-1 mV s ⁻¹	100 F g ⁻¹	510 F g ⁻¹	3
				$(CV-2 \text{ mV s}^{-1})$	
4	Flower-like MoS ₂	CV-2 mV s ⁻¹	114 F g ⁻¹	510 F g ⁻¹	4
	nanospheres				
5	Few-layered MoSe ₂	CV-2 mV s ⁻¹	199 F g ⁻¹	510 F g ⁻¹	5
	nanosheets				
6	Sphere like MoS ₂	CV-5 mV s ⁻¹	105 F g ⁻¹	411 F g ⁻¹	6
	nanostructures				
7	Metallic 1T phase MoS ₂	CV-5 mV s ⁻¹	250 F g ⁻¹	411 F g ⁻¹	7
8	2-D MoS ₂	CV-5 mV s ⁻¹	150 F g ⁻¹	411 F g ⁻¹	8
9	2-D rGO/MoS ₂	CV- 5 mV s ⁻¹	235 F g ⁻¹	411 F g ⁻¹	8
10	MoS ₂ -rGO	CV- 5 mV s ⁻¹	416 F g ⁻¹	411 F g ⁻¹	9
	nanocomposite				
11	Spherically clustered	CV-5 mV s ⁻¹	112 F g ⁻¹	411 F g ⁻¹	10
	MoS ₂ nanostructures				
12	MoS ₂ hierarchical	CV-5 mV s ⁻¹	368 F g ⁻¹	411 F g ⁻¹	11
	Nanospheres				
13	MoSe ₂ /rGO nanosheets	CV-5 mV s ⁻¹	211 F g ⁻¹	411 F g ⁻¹	12
14	High concentration	CV-10 mV s ⁻¹	148 F g ⁻¹	388.5 F g ⁻¹	13
	MoS ₂ /rGO				
15	MoSe ₂ /rGO nanosheets	CV-10 mV s ⁻¹	183 F g ⁻¹	388.5 F g ⁻¹	12
16	MoS ₂ thin film	CV-10 mV s ⁻¹	360 F g ⁻¹	388.5 F g ⁻¹	14
17	Exfoliated MoS ₂ (using	GCD-0.5 A g ⁻¹	18 F g ⁻¹	120.2 F g ⁻¹	15
	Me-Li)				
18	Bulk MoS ₂	GCD-0.5 A g ⁻¹	2.5 F g ⁻¹	120.2 F g ⁻¹	16

19	Exfoliated MoS ₂ sheets	GCD-0.5 A g ⁻¹	12 F g ⁻¹	120.2 F g ⁻¹	16
	(using t-Bu-Li)				
20	Bulk MoS ₂	GCD-0.5 A g ⁻¹	2.5 F g ⁻¹	120.2 F g ⁻¹	16
21	Exfoliated MoS ₂	GCD-0.5 A g ⁻¹	8 F g ⁻¹	120.2 F g ⁻¹	16
	(using t-Bu-Li)				
22	Bulk WS ₂	GCD-0.5 A g ⁻¹	2.5 F g ⁻¹	120.2 F g ⁻¹	16
23	Exfoliated WS ₂	GCD-0.5 A g ⁻¹	40 F g ⁻¹	120.2 F g ⁻¹	16
	(using t-Bu-Li)				
24	Bulk WSe ₂	GCD-0.5 A g ⁻¹	2.4 F g ⁻¹	120.2 F g ⁻¹	16
25	Exfoliated WSe ₂	GCD-0.5 A g ⁻¹	3 F g ⁻¹	120.2 F g ⁻¹	16
	(using t-Bu-Li)				
26	MoSe ₂ /rGO nanosheets	GCD-0.5 A g ⁻¹	29 F g ⁻¹	120.2 F g ⁻¹	12

* - This Work, CV - cyclic voltammetry, GCD – Galvanostatic charge-discharge measurement, Me-Li – methyl lithium, and t-Bu-Li – tert-butyl lithium.

References:

- 1. A. Ramadoss, T. Kim, G.-S. Kim and S. J. Kim, New J. Chem., 2014, 38, 2379.
- 2. J. M. Soon and K. P. Loh, Electrochem. Solid-State Lett., 2007, 10, 250.
- 3. C. Yang, Z. Chen, I. Shakir, Y. Xu and H. Lu, Nano Research, 2016, 9, 951.
- 4. X. Zhou, B. Xu, Z. Lin, D. Shu and L. Ma, J. Nanosci. Nanotechnol., 2014, 14, 7250.
- 5. S. K. Balasingam, J. S. Lee and Y. Jun, Dalton Trans., 2015, 44, 15491.
- 6. K. Krishnamoorthy, G. K. Veerasubramani, S. Radhakrishnan and S. J. Kim, Mater. Res. Bull., 2014, 50, 499.
- 7. M. Acerce, D. Voiry and M. Chhowalla, Nat Nano, 2015, 10, 313.
- Q. Mahmood, S. K. Park, K. D. Kwon, S.-J. Chang, J.-Y. Hong, G. Shen, Y. M. Jung, T. J. Park, S. W. Khang, W. S. Kim, J. Kong and H. S. Park, Adv. Energy Mater., 2016, 6, 1501115.
- 9. K. Gopalakrishnan, K. Pramoda, U. Maitra, U. Mahima, M. A. Shah and C. N. R. Rao, Nanomaterials and Energy, 2015, 4, 9.
- 10. P. Ilanchezhiyan, G. Mohan Kumar and T. W. Kang, J. Alloys Compd., 2015, 634, 104.
- 11. M. S. Javed, S. Dai, M. Wang, D. Guo, L. Chen, X. Wang, C. Hu and Y. Xi, J. Power Sources, 2015, 285, 63.
- 12. S. K. Balasingam, J. S. Lee and Y. Jun, Dalton Trans., 2016, 45, 9646.
- 13. E. G. da Silveira Firmiano, A. C. Rabelo, C. J. Dalmaschio, A. N. Pinheiro, E. C. Pereira, W. H. Schreiner and E. R. Leite, Adv. Energy Mater., 2014, 4, 1301380
- 14. B. D. Falola, T. Wiltowski and I. I. Suni, J. Electrochem. Soc., 2016, 163, D568.
- 15. A. Ambrosi, Z. Sofer and M. Pumera, Small, 2015, 11, 605.
- 16. C. C. Mayorga-Martinez, A. Ambrosi, A. Y. S. Eng, Z. Sofer and M. Pumera, Electrochem. Commun., 2015, 56, 24.