Electronic supplementary information

Hydrothermally grown CdS nanograin-sensitized 1D Zr:Fe₂O₃/FTO photoanode for efficient solar-light-driven photoelectrochemical performance

Mahadeo A. Mahadik^{§, a}, Arunprabaharan Subramanian^{§, a}, Jungho Ryu^b, Min Cho^{a, *} and Jum Suk Jang^{a, *}

^a Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Republic of Korea.

^b Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 305-350, Republic of Korea.

[§] Authors with equal contribution.

*Corresponding authors. Tel.: +82 63 850 0846; fax: +82 63 850 0834. E-mail addresses: jangjs75@jbnu.ac.kr (J.S. Jang), cho317@ jbnu.ac.kr (Min Cho).

Year	Photoelectrode	Method	Electrolyte	Performance	Ref
2016	CdS/1D Zr:Fe ₂ O ₃ Nanorod arrays	Hydrothermal + Immersion	0.50 M Na ₂ S and 0.50 M Na ₂ SO ₃	3.3 mA/cm ² 0.2 V versus Ag/AgCl	[Our work]
2016	CdS /Ti-Fe ₂ O ₃ 2D nanosheets	Electrodeposition + Dipping	$\begin{array}{l} 0.50 \text{ M Na}_2 \\ \text{S and } 0.50 \\ \text{M Na}_2 \text{SO}_3 \end{array}$	2.7 mA/cm ² 0.2 V versus Ag/AgCl	[1]
2016	Fe ₂ O ₃ /CdS co- sensitized TiO ₂ nanotube arrays (TNA)	ultrasonic- assisted chemical bath deposition (CBD) method	0.35 M Na ₂ SO ₃ + 0.25 M Na ₂ S.	$0.904 \text{ mA/cm}^2 (0.0 \text{ V}_{\text{Ag/AgCl}})$	[2]
2015	mesoporous Fe ₂ O ₃ –CdS heterostructures	interfacial thermal decomposition +chemical bath deposition method	phosphate buffer saline (pH 7.4)	0.9 mA/cm ² 0.0 V (vs Ag/AgCl)	[3]
2013	3D hierarchical CdS/α-Fe ₂ O ₃ heterojunction nanocomposites	facile chemical bath method	0.1 M Na ₂ SO ₄	1.4 μA/cm ² Vs saturated calomel electrode (SCE)	[13]

Table S1. Recent reports on photoelectrochemical performance of CdS/Fe_2O_3 photoanodes.

Table S2: Variation of crystallite size and micro strain according to the annealing at different temperatures.

CdS/Zr:Fe ₂ O ₃	D (nm)	$\epsilon_{\mu}(\times 10^{-4})$
As-grown	74.7	8.7
250 °C	69.7	9.3
350 °C	109.1	16.2
400 °C	77.4	12.0

Electrode	Applied potential	Electrolyte	Performance
	(-0.3 V _{Ag/AgCl})	$0.1 \text{ M Na}_2\text{S} + 0.02 \text{ M}$ Na $_2\text{SO}_3$.	2.2 mA/cm^2
CdS/1D	(0.2	0.1 M Na ₂ S and 0.02 M	
Zr:Fe ₂ O ₃	$V_{Ag/AgCl}$)	Na ₂ SO ₃	3.1 mA/cm^2
annealed at	(-0.3	0.5 M Na ₂ S and 0.5 M	
350 °C	V _{Ag/AgCl})	Na ₂ SO ₃	3.0 mA/cm^2
	(0.2 V _{Ag/AgCl})	0.5 M Na ₂ S and 0.5 M Na ₂ SO ₃	3.3 mA/cm²

Table S3: Comaprison of photoelectorchemical performance of annealed CdS/1D Zr:Fe₂O₃ heterostructured array at different experimentatal condition.

Table S4: EIS fitting parameters of the bare 1D $Zr:\alpha$ -Fe₂O₃, CdS, and CdS/1D $Zr:Fe_2O_3$ heterostructured array deposited at various time intervals.

Samples/	R _s	R_2	R_3	$C_{[CPE1]}$	$C_{[CPE2]}$
Parameters	Ω	Ω	Ω	μF	μF
1D Zr:Fe ₂ O ₃	51	123	929	0.33	196
CdS	47	722	3681	3.2	5.3
10_CdS/1D Zr:Fe ₂ O ₃	52	93	870	0.41	157
20_CdS/1D Zr:Fe ₂ O ₃	42	87	618	0.6	229
30_CdS/1D Zr:Fe ₂ O ₃	57	95	641	0.46	135
40_CdS/1D Zr:Fe ₂ O ₃	89	144	643	0.31	150

Annealing	R _s	R_2	R_3	$C_{[CPE1]}$	$C_{[CPE2]}$
temperature/	Ω	Ω	Ω	μF	μF
EIS parameters					
250 °C	96	24	840	0.28	1.9
300 °C	62	17	734	0.20	3.0
350 °C	63	14	664	0.20	3.1
400 °C	62	19	861	0.29	2.1

Table S5: EIS fitting parameters of the bare CdS/1D Zr:Fe₂O₃ heterostructured array annealed at various temperatures.

Table S6: EIS fitting parameters of the bare CdS coated $Zr:\alpha$ -Fe₂O₃, and 5, 10 mM Ni(OH)₂ loaded CdS coated $Zr:Fe_2O_3$ heterostructured array.

Sample/	R _s	R_2	R_3	$C_{[CPE1]}$	$C_{[CPE2]}$
parameters	Ω	Ω	Ω	μF	μF
CdS/1D Zr:Fe ₂ O ₃	63	14	664	0.20	3.1
5 mM Ni(OH) ₂ loaded CdS/1D Zr:Fe ₂ O ₃	124	7.5	700	17	34
10 mM Ni(OH) ₂ loaded CdS/1D Zr:Fe ₂ O ₃	99	7.4	883	0.24	33

Fig. S1: FE-SEM cross-sectional images of (a) pristine 1D Zr:Fe₂O₃, and CdS deposited on 1D Zr:Fe₂O₃ for (b) 10 min, (c) 20 min, (d) 30 min, (e) 40 min, respectively.

Fig. S2: (a) Current density-voltage characteristics (solid lines) and in the dark (dash lines) at a scan rate of 50 mVs⁻¹, (b) Potentiostatic photocurrent density-time characteristic, under simulated AM 1.5G illumination, (c) EIS spectrum of CdS/1D Zr:Fe₂O₃ (d) UV-Vis absorption spectrum for CdS/1D Zr:Fe₂O₃ deposited at (a), 10 min, 20 min, 30 min, and 40 min. Inset shows the corresponding band gaps.

Fig. S3: (a) Williamson-Hall plot for the as-grown and the annealed CdS/1D Zr:Fe₂O₃ photoanodes, (b) XPS survey scan and (c,d) nanrrow scan spectra of Cd3d and Fe2p for CdS/1D Zr:Fe₂O₃ heterostructure photoanodes. The presence of Cd peaks (Cd $3d_{5/2}$ at 405.3 eV and Cd $3d_{3/2}$ at 411.9 eV) corresponds to the presence of the oxidation state +2 of Cd 3d in CdS⁴⁻⁶.

Fig. S4: (a) Current density-voltage characteristics (solid lines) and in the dark (dash lines), (b) Potentiostatic photocurrent density-time characteristic, (c) EIS specta under simulated AM 1.5G illumination for CdS/1D Zr:Fe₂O₃ annealed at different temperatures, Inset shows the simple equivalent circuit used to fit the EIS specta.

Fig. S5: Current density-voltage characteristics (a,c, e) and potentiostatic photocurrent density-time (b,d,f) characteristics of annealed CdS/1D $Zr:Fe_2O_3$ at different experimental conditions.

Fig. S6: (a) UV-Visible absorption spectrum. Inset shows the corresponding band gaps, (b) Mott-Schottky plots measured in a $0.1 \text{ M Na}_2\text{S} + 0.02 \text{ M Na}_2\text{SO}_3$ electrolyte for bare CdS and 1D Zr: α -Fe₂O₃ on FTO.

Fig. S7 Top-view FE-SEM images of (a) 2 mM, (b) 5 mM, (c) 10 mM, and (d) cross-sectional FE-SEM image of the 5 mM nickel precursor loaded on annealed CdS/1D Zr:Fe₂O₃.

Fig. S8 Stability test of Ni(OH)₂/CdS/1D Zr:Fe₂O₃ ands pristine 1D Zr:α-Fe₂O₃ deposited on FTO substrates.

Fig. S9 XRD patterns of (a) CdS nanograin-sensitized 1D $Zr:\alpha$ -Fe₂O₃ and (b) Ni(OH)₂ loaded CdS nanograin-sensitized 1D $Zr:\alpha$ -Fe₂O₃ nanorod arryas before and after PEC measurements.

Fig. S10. FESEM of (a, c) CdS nanograin-sensitized 1D Zr:α-Fe₂O₃ and Ni(OH)₂ loaded CdS nanograin-sensitized 1D Zr:α-Fe₂O₃ nanorod arryas before PEC measurements and (b,d) are of after measurements.

Fig. S11. EDS of (a, c) CdS nanograin-sensitized 1D $Zr:\alpha$ -Fe₂O₃ and Ni(OH)₂ loaded CdS nanograin-sensitized 1D $Zr:\alpha$ -Fe₂O₃ nanorod arryas before PEC measurements and (c,d) are the after measurements.

Fig. S12. Schematic presentation of prevention of CdS photo-corrosion by $Ni(OH)_2$ protecting layer.

Fig. S13 . EIS Nyquist plots of (A) CdS nanograin-sensitized 1D $Zr:\alpha$ -Fe₂O₃, (B) 5 mM and (C) 10 mM Ni(OH)₂ loaded CdS nanograin-sensitized 1D $Zr:\alpha$ -Fe₂O₃ films at -0.3 V vs Ag/AgCl.

References

[1] X. Xie, K. Li, W. D. Zhang, RSC Adv., 2016, 6, 74234 – 74240.

[2] C. H. Chan, P. Samikkannu and H. W. Wang, Int. J. Hydrogen Energy, 2016, **41**, 17818 – 17825.

[3] J. Tang, J. Li, Y. Zhang, B. Kong, Yiliguma, Y. Wang, Y. Quan, H. Cheng, A.M. Al-Enizi, X. Gong, G. Zheng, Anal. Chem., 2015, 87, 6703 – 6708.

[4] G. Yang, B. Yang, T. Xiao, Z. Yan, Appl. Surf. Sci., 2013, 283, 402-410.

[5] J. H. Bang, P. V. Kamat, Quantum Dot Sensitized Solar Cells. ACS Nano, 2009, 3, 1467–1476.

[6] P. Sheng, W Li, J. Cai, X. Wang, X. Tong, Q. Cai, C. A. Grimes, J. Mater. Chem. A, 2013, 1, 7806 – 7815.