SUPPORTING INFORMATION

Hg(II) and Pd(II) complexes with a new selenoether bridged biscarbene ligand: Efficient mono- and bis-arylation of methyl acrylate with a pincer biscarbene Pd(II) precatalyst

Rishu,^a Billa Prashanth,^a Deependra Bawari,^a Ushnish Mandal,^b Aditya Verma,^a Angshuman Roy Choudhury,^a and Sanjay Singh^a*

^aDepartment of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India.

^bDepartment of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur – 741246, India.

Contents

- (1) Figure S1-S6 Heteronuclear NMR spectra and HRMS spectrum of (LH₂)Br₂
- (2) Figure S7-S12 Heteronuclear NMR spectra and HRMS spectrum of $(LH_2)(BF_4)_2$
- (3) Figure S13-S17 Heteronuclear NMR spectra and HRMS spectra of (LH₂)(NO₃)₂
- (4) Figure S18-S23 Heteronuclear NMR spectra and HRMS spectra of [Hg(L-κ²C)][HgBr₄]
 (C1)
- (5) Figure S24-S29 Heteronuclear NMR spectra and HRMS spectrum of [PdBr(Lκ³CSeC)]Br (C2)
- (6) Figure S30-S33 Heteronuclear NMR spectra and HRMS spectrum of *cis*-[PdBr₂(L-κ²C)]
 (C3)
- (7) Figure S34-S39 Heteronuclear NMR spectra and HRMS spectrum of [Pd(L- $\kappa^4 C_{Bz} CSeC$)]NO₃ (C4)
- (8) Figure S40-S41 Heteronuclear NMR spectra of 1a
- (9) Figure S42-S43 Heteronuclear NMR spectra of 1b

- (10) Figure S44-S45 Heteronuclear NMR spectra of 2a
- (11) Figure S46-S47 Heteronuclear NMR spectra of 2b
- (12) Figure S48-S49 Heteronuclear NMR spectra of 3a
- (13) Figure S50-S51 Heteronuclear NMR spectra of 4a
- (14) Figure S52-S53 Heteronuclear NMR spectra of 5a
- (15) Figure S54-S55 Heteronuclear NMR spectra of 5b
- (16) Figure S56-S58 Heteronuclear NMR spectra of 6a
- (17) Figure S59-S60 Heteronuclear NMR spectra of 7a
- (18) Figure S61-S62 Heteronuclear NMR spectra of 7b
- (19) Figure S63-S64 Heteronuclear NMR spectra of 8a
- (20) Figure S65-S66 Heteronuclear NMR spectra of 8b
- (21) Figure S67 Single crystal X-ray structure of (LH₂)(BF₄)₂
- (22) Figure S68 Single crystal X-ray structure of 2b
- (23) Table S1: Crystallographic parameters for compounds (LH₂)(BF₄)₂ and 2b

Heteronuclear NMR spectra and HRMS spectrum of (LH₂)Br₂

Figure S2. ¹³C NMR spectrum (100 MHz, DMSO-d₆) of (LH₂)Br₂

Figure S3. ⁷⁷Se NMR spectrum (76.2 MHz, DMSO-d₆) of (LH₂)Br₂

Figure S4. ¹H-¹H COSY NMR spectrum (DMSO-d₆) of (LH₂)Br₂

Figure S5. ¹H-¹³C HSQC NMR spectrum (DMSO-d₆) of (LH₂)Br₂

Figure S6. HRMS spectrum (ESI⁺) of (LH₂)Br₂

¹H and ¹³C NMR data for (LH₂)Br₂: ¹H NMR (400 MHz, DMSO-d₆): $\delta = 10.33$ (s, 2H, NC*H*N), 8.19 (broad d, 2H, ³*J*_{H-H} = 8 Hz, Ar-*H*), 8.00 (broad d, 2H, ³*J*_{H-H} = 8 Hz, Ar-*H*), 7.65-7.70 (m, 4H, Ar-*H*), 7.56 (broad d, 4H, ³*J*_{H-H} = 8 Hz, Ar-*H*), 7.35-7.40 (m, 6H, Ar-*H*), 5.86 (s, 4H, -C*H*₂Ph), 4.90 (t, 4H, ³*J*_{H,H} = 7 Hz, -NC*H*₂), 3.28 (t, 4H, ³*J*_{H,H} = 7 Hz, -C*H*₂Se). ¹³C{¹H} NMR (100 MHz, DMSO-d₆): $\delta = 143.1$ (NCHN), 134.5 (s, C10), 131.5 (s, C11), 131.4 (s, C12), 129.4 (s, C6 & C8), 129.1 (s, C7), 128.7 (s, C5 & C9), 127.3 (s, C3), 127.1 (s, C4), 114.7 (s, C2) 114.5 (s, C1), 50.3 (-CH₂Ph), 47.3 (-NCH₂), 22.1 (-CH₂Se).

Heteronuclear NMR spectra and HRMS spectrum of (LH₂)(BF₄)₂

Figure S7.¹H NMR spectrum (400 MHz, DMSO-d₆) of (LH₂)(BF₄)₂

Figure S8. ¹³C NMR spectrum (100 MHz, DMSO-d₆) of (LH₂)(BF₄)₂

Figure S9. ¹¹B NMR spectrum (128.4 MHz, DMSO-d₆) of (LH₂)(BF₄)₂

Figure S10. ¹⁹F NMR spectrum (376.4 MHz, DMSO-d₆) of $(LH_2)(BF_4)_2$

Figure S11. ⁷⁷Se NMR spectrum (76.2 MHz, DMSO-d₆) of (LH₂)(BF₄)₂

Figure S12. HRMS spectrum (ESI⁺) of (LH₂)(BF₄)₂

Figure S13. ¹H NMR spectrum (400 MHz, DMSO-d₆) of $(LH_2)(NO_3)_2$. Insets (I) and (II) show expanded aromatic and aliphatic spectral region.

Figure S14. ¹³C NMR spectrum (100 MHz, DMSO-d₆) of $(LH_2)(NO_3)_2$. Inset (I) shows expanded aromatic spectral region.

Figure S15. ⁷⁷Se NMR spectrum (76.2 MHz, DMSO-d₆) of (LH₂)(NO₃)₂

Figure S16. HRMS spectra (ESI⁺) of (LH₂)(NO₃)₂.

Figure S17. HRMS spectra (ESI⁺) of (LH₂)(NO₃)₂.

Heteronuclear NMR spectra and HRMS spectra of [Hg(L-κ²C)][HgBr₄] (C1)

Figure S18. ¹H NMR spectrum (400 MHz, DMSO-d₆) of C1. Inset (I) shows expanded aromatic spectral region.

Figure S19. ¹³C NMR spectrum (100 MHz, DMSO-d₆) of C1. Insets (I) and (II) show expanded aromatic and aliphatic spectral region.

Figure S20. ⁷⁷Se NMR spectrum (76.2 MHz, DMSO-d₆) of C1

Figure S22. HRMS spectra (ESI⁺) of C1

Figure S23. HRMS spectra (ESI-) of C1

Heteronuclear NMR spectra and HRMS spectrum of [PdBr(L-κ³*CSeC*)]Br (C2)

Figure S24. ¹H NMR spectrum (400 MHz, DMSO-d₆) of C2. Insets (I), (II) and (III) show expanded aromatic and aliphatic spectral region.

Figure S25. ¹³C NMR spectrum (100 MHz, DMSO- d_6) of C2. Insets (I) and (II) show expanded aromatic and aliphatic spectral region.

Figure S26. ¹H-¹H COSY NMR spectrum (DMSO-d₆) of C2.

Figure S27. ¹H-¹³C HSQC NMR spectrum (DMSO-d₆) of C2.

¹H and ¹³C NMR data for C2: ¹H NMR (400 MHz, DMSO-d₆): $\delta = 8.04$ (d, 2H, ³ $J_{H,H} = 8$ Hz, Ar-H), 7.67 (d, 2H, ³ $J_{H,H} = 8$ Hz, Ar-H), 7.47-7.38 (m, 8H, Ar-H), 7.17-7.20 (m, 6H, Ar-H), 6.33 (broad, 2H, - CH_2 Ph), 5.87 (broad, 2H, - CH_2 Ph), 5.53 (broad, 2H, - NCH_2), 5.06 (broad, 2H, - CH_2 Se), 3.78 (broad, 2H, - NCH_2), 3.48 (broad, 2H, - CH_2 Se) the signal overlaps with the signal of residual water in DMSO-d₆. ¹³C{¹H} NMR (100 MHz, DMSO-d₆): $\delta = 177.7$ (NCN), 136.4 (s, C10), 134.3 (s, C11), 133.8 (s, C12), 129.1 (s, C6 & C8), 128.3 (s, C7), 127.9 (s, C5 & C9), 124.6 (s, C3), 124.4 (s, C4), 112.5 (s, C2), 112.4 (s, C1), 51.6 (- CH_2 Ph), 49.5 (- NCH_2), 34.5 (- CH_2 Se).

Figure S28. ⁷⁷Se NMR spectrum (76.2 MHz, DMSO-d₆) of C2

Figure S29. HRMS spectrum (ESI⁺) of C2

Heteronuclear NMR spectra and HRMS spectrum of *cis*-[PdBr₂(L-κ²C)] (C3)

Figure S30. ¹H NMR spectrum (400 MHz, DMSO-d₆) of C3. Inset (I) shows expanded aliphatic spectral region.

Figure S31. ¹³C NMR spectrum (100 MHz, DMSO- d_6) of C3. Inset (I) shows expanded aromatic spectral region.

Figure S32. ⁷⁷Se NMR spectrum (76.2 MHz, DMSO-d₆) of C3.

Figure S33. HRMS spectrum (ESI⁺) of C3

Heteronuclear NMR spectra and HRMS spectrum of [Pd(L-κ⁴C_{Bz}CSeC)]NO₃ (C4)

Figure S34. ¹H NMR spectrum (400 MHz, DMSO-d₆) of C4.

Figure S35. ¹³C NMR spectrum (100 MHz, DMSO-d₆) of C4.

Figure S36. ¹H-¹H COSY NMR spectrum (DMSO-d₆) of C4.

Figure S37. ¹H-¹³C HSQC NMR spectrum (DMSO-d₆) of C4.

¹H and ¹³C NMR data for C4: ¹H NMR (400 MHz, DMSO-d₆): $\delta = 8.00$ (d, 2H, ³ $J_{H,H} = 8$ Hz, Ar-*H*), 7.59 (d, 2H, ³ $J_{H,H} = 8$ Hz, Ar-*H*), 7.44 (m, 7H, ³ $J_{H,H} = 8$ Hz, Ar-*H*), 7.27 (m, 6H, Ar-*H*), 6.06 (d, 2H, ² $J_{H,H} = 16$ Hz, -C*H*HPh), 5.83 (d, 2H, ² $J_{H,H} = 16$ Hz, -C*H*HPh), 5.50 (d, 2H, ² $J_{H,H} = 12$ Hz, NC*H*H), 5.02 (ps t, 2H, ² $J_{H,H} = 12$ Hz, -C*H*HSe), 3.73 (d, 2H, ² $J_{H,H} = 12$ Hz, -NCH*H*), 3.53 (ps t, 2H, ² $J_{H,H} = 12$ Hz, -CH*H*Se). ¹³C{¹H} NMR (100 MHz, DMSO-d₆): $\delta = 176.9$ (NCN), 175.4 (NCN), 136.8 (s, C10, C10²), 133.9 & 133.6 (s, C11 & C12), 129.1 (s, C6, C6², C8 & C8²), 128.3 (s, C7 & C7²), 127.9 (s, C5, C5², C9), 124.4 (s, C3 & C4), 112.4 (s, C1 & C2), 50.3 (-CH₂Ph), 49.0 (-NCH₂), 33.1 (-CH₂Se).

Figure S38. ⁷⁷Se NMR spectrum (76.2 MHz, DMSO-d₆) of C4

Figure S39. HRMS spectrum (ESI⁺) of C4

Characterization of Heck coupled products

Heteronuclear NMR spectra of 1a and 1b

trans-4-methylcinnamic acid methyl ester (1a)

M.pt. 57-58°C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.70$ (d, 1H, ³*J*(H,H) = 16 Hz, Alkene), 7.45 (d, 2H, ³*J*(H,H) = 8 Hz, Ar-*H*), 7.22(d, 2H, ³*J*(H,H) = 8 Hz, Ar-*H*), 6.42 (d, 1H, ³*J*(H,H) = 16 Hz, Alkene), 3.82 (s, 3H, OCH₃), 2.40 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 167.7, 144.9, 140.8, 131.7, 129.6, 128.1, 116.7, 51.7, 21.5. MS (ESI): calcd (found) m/z =178.0993 (178.0732) [M+2H]⁺

Figure S40. ¹H NMR spectrum (400 MHz, CDCl₃) of **1a**. Inset **(I)** and **(II)** show expanded aromatic and aliphatic spectral region.

Figure S41. ¹³C NMR spectrum (100 MHz, CDCl₃) of 1a

bis(4-methylphenyl)cinnamic acid methyl ester (1b)

M.pt. 84.8-86.6 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.27 (d, 4H, ³*J*(H,H) = 12 Hz, Ar-*H*), 7.18 (d, 4H, ³*J*(H,H) = 12 Hz, Ar-*H*), 6.39 (s, 1H, Alkene), 3.69 (s, 3H, OCH₃), 2.47 (s, 3H,

CH₃), 2.41 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ = 166.6, 157.5, 139.7, 138.3, 138.1, 136.0, 129.2, 129.1, 128.7, 128.4, 115.6, 51.2, 21.5, 21.3. MS (ESI): calcd (found) m/z = 266.1385 (267.1393) [M+H]⁺.

Figure S42. ¹H NMR spectrum (400 MHz, CDCl₃) of 1b

Figure S43. ¹³C NMR spectrum (100 MHz, CDCl₃) of 1b. Inset (I) and (II) show expanded aromatic spectral region.

Heteronuclear NMR spectra of 2a and 2b

trans-4-formylcinnamic methyl ester (2a)

M.pt. 75.6-78.1 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 10.02$ (s, 1H, CHO), 7.89 (d, 2H, ³*J*(H,H) = 8 Hz, Ar-*H*), 7.66 (d, 2H, ³*J*(H,H) = 8 Hz, Ar-*H*), 7.70 (d, 1H, ³*J*(H,H) = 16 Hz, Alkene), 6.54 (d, 1H, ³*J*(H,H) = 16 Hz, Alkene), 3.82 (s, 3H, OCH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.5$, 166.8, 143.1, 140.0, 137.2, 130.2, 128.5, 120.9, 52.0. MS (ESI): calcd (found) *m*/*z* = 191.0708 (191.0990) [M]⁺.

Figure S44. ¹H NMR spectrum (400 MHz, CDCl₃) of **2a.** Inset **(I)** and **(II)** show expanded aromatic and aliphatic spectral region.

Figure S45. ¹³C NMR spectrum (100 MHz, CDCl₃) of 2a

M.pt. 113.0-113.8 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 10.08$ (s, 1H, CHO), 10.04 (s, 1H, CHO), 7.96 (d, 2H, ³*J*(H,H) = 8 Hz, Ar-*H*), 7.87 (d, 2H, ³*J*(H,H) = 8 Hz, Ar-*H*), 7.45 (d, 2H, ³*J*(H,H) = 8 Hz, Ar-*H*), 7.40 (d, 2H, ³*J*(H,H) = 8 Hz, Ar-*H*), 6.54 (s, 1H, Alkene), 3.65(s, 3H, OCH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.8$, 191.5, 165.6, 154.2, 145.3, 144.4, 136.9, 136.1, 129.9, 129.7, 129.6, 128.8, 120.0, 51.7. MS (ESI): calcd (found) *m*/*z* = 295.0970 (295.1320) [M]⁺.

Figure S46. ¹H NMR spectrum (400 MHz, CDCl₃) of (**2b**). Inset (**I**) and (**II**) show expanded aromatic spectral region.

Figure S47. ¹³C NMR spectrum (100 MHz, CDCl₃) of (**2b**). Inset (**I**) and (**II**) show expanded aromatic spectral region.

Heteronuclear NMR spectra of 3a

trans-cinnamic acid methyl ester (3a)

M.pt. 36-37 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.72$ (d, 1H, ³*J*(H,H) = 16 Hz, Alkene), 7.53-7.55 (m, 2H, Ar-*H*), 7.39-7.40 (m, 3H, Ar-*H*), 6.47 (d, 1H, ³*J*(H,H) = 16 Hz, Alkene), 3.82 (s, 3H, C*H*₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.4$, 144.9, 134.4, 131.0, 130.3, 128.9, 128.8, 128.1, 117.8, 51.7. MS (ESI): calcd (found) *m/z* =163.0769 (163.0701) [M+H]⁺.

Figure S48. ¹H NMR spectrum (400 MHz, CDCl₃) of (**3a**). Inset (**I**) show expanded aromatic and aliphatic spectral region.

Figure S49. ¹³C NMR spectrum (100 MHz, CDCl₃) of (3a)

Heteronuclear NMR spectra of 4a

trans-2-cyanocinnamic acid methyl ester (4a)

M.pt. 61-62 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (d, 1H, ³*J*(H,H) = 16 Hz, Alkene), 7.62-7.77 (m, 3H, Ar-*H*), 7.54 (t, 1H, ³*J*(H,H) = 24 Hz, Ar-*H*), 6.64 (d, 1H, ³*J*(H,H) = 16 Hz,

Alkene), 3.87 (s, 3H, OCH₃).¹³C NMR (100 MHz, CDCl₃): $\delta = 166.3$, 139.6, 137.3, 133.6, 133.0, 130.2, 126.9 122.7, 117.2, 112.8, 51.1. MS (ESI): calcd (found) m/z = 188.0711 (188.0178) [M+H]⁺.

Figure S50. ¹H NMR spectrum (400 MHz, CDCl₃) of (4a). Inset (I) and (II) show expanded aromatic and aliphatic spectral region.

Figure S51. ¹³C NMR spectrum (100 MHz, CDCl₃) of (4a). Inset (I) shows expanded aromatic spectral region.

Heteronuclear NMR spectra of 5a and 5b

trans-4-acylcinnamic acid methyl ester (5a)

M.pt. 104-105 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.99 (d, 4H, ³*J*(H,H) = 8 Hz, Ar-*H*), 7.73 (d, 1H, ³*J*(H,H) = 16 Hz, alkene), 7.63 (d, 2H, ³*J*(H,H) = 8 Hz, Ar-*H*), 6.55 (d, 1H, ³*J*(H,H) = 16 Hz, alkene), 3.84(s, 3H, OCH₃). 2.64 (s, 3H, -COCH₃) ¹³C NMR (100 MHz, CDCl₃): δ = 197.4, 166.1, 143.3, 138.7, 138.0, 128.8, 128.2, 120.3, 52.0, 26.8. MS (ESI): calcd (found) m/z =205.0864 (205.0865) [M+H]⁺.

Figure S52. ¹H NMR spectrum (400 MHz, CDCl₃) of (5a). Inset (I) shows expanded aromatic spectral region.

Figure S53. ¹³C NMR spectrum (100 MHz, CDCl₃) of (5a). Inset (I) shows expanded aromatic spectral region.

bis(4-acyl phenyl) cinnamic acid methyl ester (5b)

M.pt. 126.0-129.3 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.03$ (d, 2H, ³*J*(H,H) = 4 Hz, Ar-*H*), 7.93 (d, 2H, ³*J*(H,H) = 4 Hz, Ar-*H*), 7.38 (d, 2H, ³*J*(H,H) = 4 Hz, Ar-*H*), 7.33 (d, 2H, ³*J*(H,H) = 4 Hz, Ar-*H*), 6.51 (s, 1H, alkene), 3.66 (s, 3H, -OCH₃), 2.66 (s, 3H, -COCH₃), 2.62 (s, 3H, -COCH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 197.6$, 197.4, 165.7, 154.6, 144.2, 143.2, 137.7, 136.8, 129.3, 128.5, 128.4, 128.2, 119.3, 51.6, 26.8, 26.7. MS (ESI): calcd (found) *m/z* = 323.1283 (323.1277) [M+H]⁺.

Figure S54. ¹H NMR spectrum (400 MHz, CDCl₃) of (5b). Inset (I) and (II) show expanded aromatic and aliphatic spectral region.

Figure S55. ¹³C NMR spectrum (100 MHz, CDCl₃) of **(5b)**. Inset **(I)** and **(II)** show expanded aromatic spectral region.

Heteronuclear NMR spectra of 6a

trans-4-fluorocinnamic acid methyl ester (6a)

M.pt. 45-47 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.66$ (d, 1H, ³*J*(H,H) = 16 Hz, alkene), 7.50-7.54 (m, 2H, Ar-*H*), 7.06-7.11 (m, 2H, Ar-*H*), 6.37 (d, 1H, ³*J*(H,H) = 16 Hz, alkene), 3.81 (s, 3H, OC*H*₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.4$, 162.6, 143.6, 129.9, 130.0, 117.5, 116.0, 51.6. ¹⁹F NMR (376.4 MHz, CDCl₃): $\delta = -109.6$. MS (ESI): calcd (found) *m/z* = 181.0664 (181.0617) [M+H]⁺.

Figure S56. ¹H NMR spectrum (400 MHz, CDCl₃) of (6a)

Figure S57. ¹³C NMR spectrum (100 MHz, CDCl₃) of (6a)

Figure S58. ¹⁹F NMR spectrum (376.4 MHz, CDCl₃) of (6a)

Heteronuclear NMR spectra of 7a and 7b

trans-4-cyanocinnamic acid methyl ester (7a)

M.pt. 100-102 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.62-7.72* (m, 5H, alkene & Ar-*H*), 6.54 (d, 1H, ³*J*(H,H) = 16 Hz, alkene), 3.85(s, 3H, OC*H*₃). ¹³C NMR (100 MHz, CDCl₃): δ = 166.6, 142.5, 138.6, 132.7, 128.4, 121.4, 118.4, 113.4, 52.1. MS (ESI): calcd (found) *m*/*z* = 188.0711 (188.0767) [M+H]⁺.

* one of the olefinic proton merged in the aromatic region

Figure S59. ¹H NMR spectrum (400 MHz, CDCl₃) of (7a). Insets (I) and (II) show expanded aromatic and aliphatic spectral region.

Figure S60. ¹³C NMR spectrum (100 MHz, CDCl₃) of (7a)

bis(4-cyanophenyl)cinnamic acid methyl ester (7b)

M.pt. 100-102 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.66-7.75 (m, 4H Ar-*H*), 7.33-7.39 (m, 4H, Ar-*H*), 6.52 (s, 1H, alkene) 3.68 (s, 3H, OC*H*₃). ¹³C NMR (100 MHz, CDCl₃): δ = 165.2, 152.9, 143.6, 142.4, 132.5, 132.1, 129.8, 128.6, 120.6, 118.5, 118.1, 113.5, 112.6, 51.9. MS (ESI): calcd (found) *m/z* = 289.0977 (289.0771) [M+H]⁺.

Figure S61. ¹H NMR spectrum (400 MHz, CDCl₃) of (7b). Inset (I) and (II) show expanded aromatic and aliphatic spectral region.

Figure S62. ¹³C NMR spectrum (100 MHz, CDCl₃) of (7b)

Heteronuclear NMR spectra of 8a and 8b

trans-4-nitrocinnamic acid methyl ester (8a)

M.pt. 132-133 °C, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.28$ (d, 2H, ³*J*(H,H) = 8 Hz, Ar-*H*), 7.74 (d, 1H, ³*J*(H,H) = 16 Hz, alkene), 7.70 (d, 2H, ³*J*(H,H) = 8 Hz, Ar-*H*), 6.59 (d, 1H, ³*J*(H,H) = 16 Hz, alkene), 3.86 (s, 3H, OCH₃).¹³C NMR (100 MHz, CDCl₃): $\delta = 166.5$, 148.5, 141.9, 140.5, 128.7, 124.2, 122.1, 52.1. MS (ESI): calcd (found) *m*/*z* = 208.0609 (208.0657) [M+H]⁺.

Figure S63. ¹H NMR spectrum (400 MHz, CDCl₃) of **(8a)**. Inset **(I)** and **(II** show expanded aromatic and aliphatic spectral region.

Figure S64. ¹³C NMR spectrum (100 MHz, CDCl₃) of (8a)

bis(4-nitrophenyl)cinnamic acid methyl ester (8b)

M.Pt. 155-157 °C, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.33$ (d, 2H,³*J*(H,H) = 16 Hz, Ar-*H*), 8.23 (d, 2H, ³*J*(H,H) = 16 Hz, Ar-*H*), 7.46 (d, 2H, ³*J*(H,H) = 12 Hz, Ar-*H*), 7.42 (d, 2H, ³*J*(H,H) = 8 Hz, Ar-*H*), 6.59 (s, 1H, alkene), 3.69 (s, 3H, OCH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 165.1$, 152.2, 148.0, 145.2, 144.3, 130.0, 128.9, 124.0, 123.7, 121.4, 51.9. MS (ESI): calcd (found) *m/z* =329.0773 (329.1685) [M+H]⁺.

Figure S65. ¹H NMR spectrum (400 MHz, CDCl₃) of (8b). Inset (I) shows expanded aromatic spectral region.

Figure S66. ¹³C NMR spectrum (400 MHz, CDCl₃) of (8b)

Structural description and X-ray data for (LH₂)(BF₄)₂ and compound 2b.

Crystals of $(LH_2)(BF_4)_2$ suitable for X-ray diffraction were grown by slow evaporation of its methanol solution. The salt $(LH_2)(BF_4)_2$ crystallizes in the triclinic system with $P_{\overline{1}}$ space group (Figure S52, Table S1). The arrangement of atoms in the backbone of $(LH_2)(BF_4)_2$ and the orientation of benzimidazole rings and its substituents closely resembles to that of $(LH_2)Br_2$ with similar metric parameters. The average B–F distance in the BF₄⁻ anion is 1.350 Å for $(LH_2)(BF_4)_2$.

Figure S67 Solid state structure of $(LH_2)(BF_4)_2$. Ellipsoids are set at the 50% probability level. Two BF_4^- anions and hydrogen atoms have been omitted for clarity. Selected bond lengths [Å] and bond angles [deg]: C(14)–Se(1) 1.955(7), C(26)–Se(1) 1.956(7), C(24)–N(2) 1.329(9), C(24)–N(4) 1.344(9), C(23)-N(4) 1.464(8), C(38)-N(5) 1.489(9), C(35)-N(5) 1.343(10), C(35)-N(12) 1.319(10), C(14)-Se(1)-C(26) 102.0(3), C(23)–N(4)–C(24), 125.5(6), N(2)–C(24)–N(4) 110.8(6), N(5)–C(35)–N(12) 110.2(7), C(35)–N(5)–C(38) 127.2(7).

Figure S68 Single crystal X-ray structure of 2b.

Table S1: Crystallographic parameters for compounds $(LH_2)(BF_4)_2$ and 2b.

Compound ^[a]	$(LH_2)(BF_4)_2$	<i>bis</i> (4-formylphenyl) cinnamic acid methyl ester (2b)
Chemical formula	$C_{32}H_{32}N_4B_2F_8Se$	C ₁₈ H ₁₄ O ₄
Molar mass	725.19	294.29
Crystal system	triclinic	monoclinic
Space group	$P\bar{1}$	C ₂ /c
<i>T</i> [K]	100.0(2)	296.0(2)
<i>a</i> [Å]	11.7285(8)	25.424(8)
<i>b</i> [Å]	11.8807(7)	8.1347(17)
<i>c</i> [Å]	12.3142(8)	15.680(4)
α[°]	96.183(5)	90.0
β[°]	98.868(6)	113.947(13)
γ[°]	101.395(5)	90.0
V [Å ³]	1644.96(19)	2963.7(14)
Ζ	2	8
$D(\text{calcd.}) [\text{g} \cdot \text{cm}^{-3}]$	1.464	1.319
μ (Mo- K_{α}) [mm ⁻¹]	1.216	0.093
Index range	$-13 \le h \le 13$	$-30 \le h \le 27$
	$-14 \le k \le 14$	$0 \le k \le 9$
	$-13 \le l \le 14$	$0 \le l \le 18$
Reflections collected	10901	12921
Independent reflections	5803	2713
Data/restraints/parameters	5803/393/486	2713/0/200
$R1, wR2[I \ge 2\sigma(I)]^{[a]}$	0.081, 0.212	0.0781, 0.231
R1, wR2 (all data)[a]	0.114, 0.239	0.094, 0.243
GOF	1.036	1.096

 $[a] R1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|. wR2 = [\Sigma w (|Fo^2| - |FC3|)^2 / \Sigma w |Fo^2|^2]^{1/2}$