Supplementary Material (ESI) for Dalton Transactions<br>This journal is (c) The Royal Society of Chemistry 2017<br>Supporting information<br>Construction of noninterpenetrating and interpenetrating $\mathbf{C o}$ (II)<br>networks with halogenated carboxylate modulated by auxiliary $\mathbf{N}$ donor coligands: structural diversity, electrochemical and photocatalytic properties<br>Shao-Yun Hao ${ }^{\text {a }}$, Suo-Xia Hou ${ }^{\text {a }}$, Kristof Van Hecke ${ }^{\text {b }}$, Guang-Hua Cui ${ }^{\text {a }}$<br>${ }^{a}$ College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, Tangshan Hebei 063009, P. R. China<br>${ }^{b}$ XStruct, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium

## S1 Electrochemical experiment

CP 1 bulk-modified carbon paste electrode (1-CPE) was fabricated as follows: 0.05 g of graphite powder and 0.015 g of CP 1 were mixed and ground together with an agate mortar and pestle to achieve an even mixture, and then 0.02 mL of Nujol was added with stirring. The homogenized mixture was packed into a glass tube with 3 mm inner diameter to a length of 8 mm , and the tube surface was wiped with weighing paper. Electrical contact was established with a copper wire. The same procedure was used for the preparation of bare CPE and 2-6-CPEs.

Table. S1 Crystal and refinement data for CPs 1-3 and 4-6.
Table. S2 Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for CPs $\mathbf{1 - 6}$.

Fig. S1 The IR spectra of the powder of the CPs 1-6 after catalytic experiments.
Fig. S2 The simulated from single-crystal data and obtained from the experiments Xray powder diffraction patterns of CPs 1-6.

Fig. S3a Cyclic voltammograms of 1-CPE in $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution at various scan rates (from inner to outer: $20,60,100,120,140,160,180 \mathrm{mV} \mathrm{s}^{-1}$ ).

Fig. S3b Cyclic voltammograms of 5-CPE in $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution at various scan rates (from inner to outer: 20, 60, 100, 120, 140, 160, $180 \mathrm{mV} \mathrm{s}^{-1}$ ).

Fig. S4 UV-vis absorption spectra at room temperature and main absorption bands for the N -donor ligands, $\mathrm{H}_{2}$ DCTP ligand, and CPs 1-6.

Fig. S5 Absorption spectra of the MB solution during the decomposition reaction under UV irradiation with the presence of CPs 2-6.

Fig. S6 X-ray powder diffraction patterns of CPs 1-6 after catalytic experiments.
Fig. S7 Three cycling runs of CPs 1-6 in the degradation of MB solution.

Table S1a Crystal and refinement data for CPs 1-3

| CPs | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| Chemical formula | $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{CoN}_{4} \mathrm{O}_{4}$ | $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{CoN}_{4} \mathrm{O}_{4}$ | $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{CoN}_{4} \mathrm{O}_{4}$ |
| Formula weight | 582.29 | 636.38 | 658.38 |
| Crystal system | Triclinic | Monoclinic | Monoclinic |
| Space group | $P$ Error! | C2/c | P2(1)/c |
| $a(\AA)$ | 9.811 (5) | 20.910(3) | 9.7424(7) |
| $b(\AA)$ | 10.140(5) | 11.6409(15) | 16.9341(13) |
| $c(\AA)$ | 13.189(7) | 12.3090(16) | 18.1411(13) |
| $\alpha\left({ }^{\circ}\right)$ | 82.569(8) | 90 | 90 |
| $\beta\left({ }^{\circ}\right)$ | 70.262(7) | 116.005(2) | 98.617(2) |
| $\gamma\left({ }^{\circ}\right)$ | 87.657(7) | 90 | 90 |
| $V\left(\AA^{3}\right)$ | 1224.7(11) | 2692.7(6) | 2959.1(4) |
| Z | 2 | 4 | 4 |
| $D_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | 1.579 | 1.570 | 1.478 |
| Absorption coefficient, $\mathrm{mm}^{-1}$ | 0.961 | 0.882 | 0.805 |
| $F(000)$ | 594 | 1,308 | 1,348 |
| Crystal size, mm | $0.27 \times 0.26 \times 0.23$ | $0.24 \times 0.22 \times 0.20$ | $0.26 \times 0.22 \times 0.21$ |
| $\theta$ range, deg | 1.653-27.531 | 2.058-27.467 | 2.547-28.310 |
| Index range $h, k, l$ | -11/12, -11/13, -12/17 | -27/27, -15/12, -15/15 | -12/13, -22/22, -24/22 |
| Reflections collected | 7,402 | 8,088 | 83,301 |
| Independent reflections ( $\mathrm{R}_{\text {int }}$ ) | 5,363 (0.0378) | 3,051 (0.0479) | 7,327 (0.0503) |
| Data/restraint/parameters | 5,363/0/334 | 3,051/0/188 | 7,327/0/390 |
| Goodness-of-fit on $F^{2}$ | 0.970 | 1.032 | 1.116 |
| Final $\mathrm{R}_{1}, w \mathrm{R}_{2}(I>2 \sigma(I))$ | 0.0592, 0.1452 | 0.0430, 0.0919 | 0.0556, 0.1227 |
| Largest diff. peak and hole | 0.595, -0.846 | 0.326, -0.335 | 0.530, -0.474 |

Table S1b Crystal and refinement data for CPs 4-6

| CPs | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: |
| Chemical formula | $\mathrm{C}_{96} \mathrm{H}_{76} \mathrm{Cl}_{6} \mathrm{Co}_{3} \mathrm{~N}_{12} \mathrm{O}_{14}$ | $\mathrm{C}_{47} \mathrm{H}_{41} \mathrm{Cl}_{2} \mathrm{CoN}_{6} \mathrm{O}_{4}$ | $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{CoN}_{4} \mathrm{O}_{4}$ |
| Formula weight | 2011.17 | 883.69 | 686.43 |
| Crystal system | Monoclinic | Monoclinic | Monoclinic |
| Space group | I2/a | I2/c | C2/c |
| $a(\AA)$ | 31.8764(19) | 21.884(6) | 20.708(4) |
| $b(\AA)$ | 10.3125(6) | 17.122(4) | 12.429(2) |
| $c(\AA)$ | 58.334(3) | 23.362(6) | 13.446(2) |
| $\alpha{ }^{\circ}{ }^{\circ}$ | 90 | 90 | 90 |
| $\beta\left({ }^{\circ}\right)$ | 104.529(3) | 103.18(3) | 116.385(2) |
| $\gamma\left({ }^{\circ}\right)$ | 90 | 90 | 90 |
| $V\left(\AA^{3}\right)$ | 18562.6(18) | 8523(4) | 3100.3(10) |
| Z | 8 | 8 | 4 |
| $D_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | 1.439 | 1.377 | 1.471 |
| Absorption coefficient, $\mathrm{mm}^{-1}$ | 0.773 | 0.580 | 0.772 |
| $F(000)$ | 8,248 | 3,664 | 1,412 |
| Crystal size, mm | $0.26 \times 0.25 \times 0.22$ | $0.27 \times 0.26 \times 0.22$ | $0.23 \times 0.23 \times 0.18$ |
| $\theta$ range, deg | 2.257-28.399 | 1.49-26.37 | 1.97-27.48 |
| Index range $h, k, l$ | -42/42, -13/13, -74/77 | -27/26, -18/21, -29/18 | -16/26, -16/16, -17/14 |
| Reflections collected | 209,919 | 23,754 | 9,226 |
| Independent reflections ( $\mathrm{R}_{\mathrm{int}}$ ) | 23,156 (0.0446) | 8,702(0.1171) | 3,552(0.0362) |
| Data/restraint/parameters | 23,156/565/1281 | 8,702/0/547 | 3,552/0/206 |
| Goodness-of-fit on $F^{2}$ | 1.039 | 0.974 | 1.013 |
| Final $\mathrm{R}_{1}, w \mathrm{R}_{2}(I>2 \sigma(I))$ | 0.0529, 0.1317 | 0.0683, 0.1486 | 0.0380, 0.0891 |
| Largest diff. peak and hole | 0.635, -0.594 | 1.011, -0.402 | 0.341, -0.237 |

Table S2 Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for complexes $\mathbf{1}-\mathbf{6}$.

| Parameter | Value | Parameter | Value |
| :---: | :---: | :---: | :---: |
| 1 |  |  |  |
| $\mathrm{Co}(1)-\mathrm{O}(2)$ | 1.997(3) | $\mathrm{Co}(1)-\mathrm{O}(3)$ | 2.031(3) |
| $\mathrm{Co}(1)-\mathrm{N}(1)$ | 2.046(4) | $\mathrm{Co}(1)-\mathrm{N}(4) \mathrm{A}$ | 2.067(4) |
| $\mathrm{Co}(1)-\mathrm{O}(4)$ | 2.409(4) |  |  |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(3)$ | 100.20(15) | $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{N}(1)$ | 111.97(15) |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{N}(1)$ | 128.83(17) | $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{N}(4) \mathrm{A}$ | 99.24(15) |
| $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{N}(4) \mathrm{A}$ | 107.83(16) | $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(4) \mathrm{A}$ | 105.03(16) |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(4)$ | 158.50(13) | $\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(4)$ | 58.52(14) |
| $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(4)$ | 86.41(14) | $\mathrm{N}(4) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(4)$ | 85.90(15) |
| 2 |  |  |  |
| $\mathrm{Co}(1)-\mathrm{N}(2)$ | 2.099(2) | $\mathrm{Co}(1)-\mathrm{O}(1) \mathrm{A}$ | 2.154 (2) |
| $\mathrm{Co}(1)-\mathrm{N}(2) \mathrm{A}$ | 2.099(2) | $\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{A}$ | 2.183(2) |
| $\mathrm{Co}(1)-\mathrm{O}(1)$ | 2.154 (2) | $\mathrm{Co}(1)-\mathrm{O}(2)$ | 2.183(2) |
| $\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(2) \mathrm{A}$ | 93.31(12) | $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{A}$ | 102.00(7) |
| $\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{O}(1)$ | 94.70(8) | $\mathrm{O}(1) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(2 \mathrm{~A}$ | 60.44(7) |
| $\mathrm{N}(2) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(1)$ | 100.64(8) | $\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{O}(2)$ | 154.66(8) |
| $\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{O}(1) \mathrm{A}$ | 100.64(8) | $\mathrm{N}(2) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(2)$ | 96.03(8) |
| $\mathrm{N}(2) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(1) \mathrm{A}$ | 94.70(8) | $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(2)$ | 60.44(7) |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(1) \mathrm{A}$ | 157.61(11) | $\mathrm{O}(1) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(2)$ | 102.00(7) |
| $\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{A}$ | 96.03(8) | $\mathrm{O}(2) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(2)$ | 85.40(10) |
| $\mathrm{N}(2) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{A}$ | 154.66(8) |  |  |
| 3 |  |  |  |
| $\mathrm{Co}(1)-\mathrm{O}(1)$ | 2.044(2) | $\mathrm{Co}(1)-\mathrm{O}(3) \mathrm{B}$ | 2.135(2) |
| $\mathrm{Co}(1)-\mathrm{N}(4) \mathrm{A}$ | 2.064(2) | $\mathrm{Co}(1)-\mathrm{O}(4) \mathrm{B}$ | 2.251(2) |
| $\mathrm{Co}(1)-\mathrm{N}(1)$ | 2.065(2) | $\mathrm{Co}(1)-\mathrm{O}(2)$ | 2.398(2) |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{N}(4) \mathrm{A}$ | 102.07(10) | $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(4) \mathrm{B}$ | 166.83(9) |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{N}(1)$ | 98.64(10) | $\mathrm{O}(3) \mathrm{B}-\mathrm{Co}(1)-\mathrm{O}(4) \mathrm{B}$ | 59.57(9) |
| $\mathrm{N}(4) \mathrm{A}-\mathrm{Co}(1)-\mathrm{N}(1)$ | 99.43(10) | $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(2)$ | 58.14(9) |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(3) \mathrm{B}$ | 140.74(10) | $\mathrm{N}(4) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(2)$ | 159.78(9) |
| $\mathrm{N}(4) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(3) \mathrm{B}$ | 102.05(10) | $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(2)$ | 88.56(9) |
| $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(3) \mathrm{B}$ | 107.38(9) | $\mathrm{O}(3) \mathrm{B}-\mathrm{Co}(1)-\mathrm{O}(2)$ | 93.08(9) |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(4) \mathrm{B}$ | 91.90(9) | $\mathrm{O}(4) \mathrm{B}-\mathrm{Co}(1)-\mathrm{O}(2)$ | 90.33(10) |
| $\mathrm{N}(4) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(4) \mathrm{B}$ | 85.96(10) |  |  |
| 4 |  |  |  |
| $\mathrm{Co}(1)-\mathrm{O}(5)$ | 1.955(2) | $\mathrm{Co}(2)-\mathrm{O}(8)$ | 1.985 (2) |
| $\mathrm{Co}(1)-\mathrm{O}(1)$ | 1.960(2) | $\mathrm{Co}(2)-\mathrm{O}(10)$ | 1.997(3) |
| $\mathrm{Co}(1)-\mathrm{N}(12) \mathrm{A}$ | 2.050(2) | $\mathrm{Co}(2)-\mathrm{N}(7)$ | 2.071(2) |
| $\mathrm{Co}(1)-\mathrm{N}(4)$ | 2.054(2) | $\mathrm{Co}(2)-\mathrm{N}(5)$ | 2.073(2) |


| $\mathrm{Co}(3)-\mathrm{O}(11)$ | 2.011(2) | $\mathrm{Co}(3)-\mathrm{N}(1) \mathrm{C}$ | 2.153(2) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Co}(3)-\mathrm{N}(9)$ | 2.081(2) | $\mathrm{Co}(3)-\mathrm{O}(1 \mathrm{~W})$ | 2.228(3) |
| $\mathrm{Co}(3)-\mathrm{O}(3) \mathrm{B}$ | 2.085(2) | $\mathrm{Co}(3)-\mathrm{O}(4) \mathrm{B}$ | 2.258(2) |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{O}(1)$ | 128.35(10) | $\mathrm{O}(11)-\mathrm{Co}(3)-\mathrm{O}(3) \mathrm{B}$ | 104.26(9) |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{N}(12) \mathrm{A}$ | 114.95(9) | $\mathrm{N}(9)-\mathrm{Co}(3)-\mathrm{O}(3) \mathrm{B}$ | 145.17(8) |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{N}(12) \mathrm{A}$ | 100.64(8) | $\mathrm{O}(11)-\mathrm{Co}(3)-\mathrm{N}(1) \mathrm{C}$ | 89.83(8) |
| $\mathrm{O}(5)-\mathrm{Co}(1)-\mathrm{N}(4)$ | 102.24(8) | $\mathrm{N}(9)-\mathrm{Co}(3)-\mathrm{N}(1) \mathrm{C}$ | 94.00(9) |
| $\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{N}(4)$ | 106.69(8) | $\mathrm{O}(3) \mathrm{B}-\mathrm{Co}(3)-\mathrm{N}(1) \mathrm{C}$ | 102.93(9) |
| $\mathrm{N}(12) \mathrm{A}-\mathrm{Co}(1)-\mathrm{N}(4)$ | 100.61(9) | $\mathrm{O}(11)-\mathrm{Co}(3)-\mathrm{O}(1 \mathrm{~W})$ | 85.96(11) |
| $\mathrm{O}(8)-\mathrm{Co}(2)-\mathrm{O}(10)$ | 140.70(12) | $\mathrm{N}(9)-\mathrm{Co}(3)-\mathrm{O}(1 \mathrm{~W})$ | 84.90(12) |
| $\mathrm{O}(8)-\mathrm{Co}(2)-\mathrm{N}(7)$ | 98.66(9) | $\mathrm{O}(3) \mathrm{B}-\mathrm{Co}(3)-\mathrm{O}(1 \mathrm{~W})$ | 80.45(12) |
| $\mathrm{N}(7)-\mathrm{Co}(2)-\mathrm{N}(5)$ | 98.16(9) | $\mathrm{N}(1) \mathrm{C}-\mathrm{Co}(3)-\mathrm{O}(1 \mathrm{~W})$ | 175.16(10) |
| $\mathrm{O}(10)-\mathrm{Co}(2)-\mathrm{N}(7)$ | 106.52(11) | $\mathrm{O}(11)-\mathrm{Co}(3)-\mathrm{O}(4) \mathrm{B}$ | 163.21(8) |
| $\mathrm{O}(8)-\mathrm{Co}(2)-\mathrm{N}(5)$ | 103.84(9) | $\mathrm{N}(9)-\mathrm{Co}(3)-\mathrm{O}(4) \mathrm{B}$ | 88.39(7) |
| $\mathrm{O}(11)-\mathrm{Co}(3)-\mathrm{N}(9)$ | 106.02(9) | $\mathrm{O}(3) \mathrm{B}-\mathrm{Co}(3)-\mathrm{O}(4) \mathrm{B}$ | 59.53(7) |
| $\mathrm{O}(10)-\mathrm{Co}(2)-\mathrm{N}(5)$ | 101.89(9) | $\mathrm{N}(1) \mathrm{C}-\mathrm{Co}(3)-\mathrm{O}(4) \mathrm{B}$ | 97.86(8) |
| $\mathrm{O}(1 \mathrm{~W})-\mathrm{Co}(3)-\mathrm{O}(4) \mathrm{B}$ | 86.83(11) |  |  |
| 5 |  |  |  |
| $\mathrm{Co}(1)-\mathrm{O}(6)$ | 2.075(4) | $\mathrm{Co}(1)-\mathrm{N}(3) \mathrm{A}$ | 2.108(4) |
| $\mathrm{Co}(1)-\mathrm{O}(1) \mathrm{B}$ | $2.138(3)$ | $\mathrm{Co}(1)-\mathrm{N}(1)$ | $2.156(4)$ |
| $\mathrm{Co}(1)-\mathrm{N}(5)$ | 2.162(4) | $\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{B}$ | 2.285(4) |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{N}(3) \mathrm{A}$ | 99.62(15) | $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(1) \mathrm{B}$ | 94.21(14) |
| $\mathrm{N}(3) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(1) \mathrm{B}$ | 165.59(16) | $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{N}(1)$ | 93.95(16) |
| $\mathrm{N}(3) \mathrm{A}-\mathrm{Co}(1)-\mathrm{N}(1)$ | 84.78(15) | $\mathrm{O}(1) \mathrm{B}-\mathrm{Co}(1)-\mathrm{N}(1)$ | 90.27(15) |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{N}(5)$ | 92.30(15) | $\mathrm{N}(3) \mathrm{A}-\mathrm{Co}(1)-\mathrm{N}(5)$ | 88.61(15) |
| $\mathrm{O}(1) \mathrm{B}-\mathrm{Co}(1)-\mathrm{N}(5)$ | 94.90(15) | $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(5)$ | 171.58(16) |
| $\mathrm{O}(6)-\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{B}$ | 152.82(14) | $\mathrm{N}(3) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{B}$ | 107.27(15) |
| $\mathrm{O}(1) \mathrm{B}-\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{B}$ | 59.34(14) | $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{B}$ | 92.41(15) |
| $\mathrm{N}(5)-\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{B}$ | 84.56(14) |  |  |
| 6 |  |  |  |
| $\mathrm{Co}(1)-\mathrm{N}(1) \mathrm{A}$ | 2.076(2) | $\mathrm{Co}(1)-\mathrm{N}(1)$ | 2.076(2) |
| $\mathrm{Co}(1)-\mathrm{O}(2)$ | $2.163(2)$ | $\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{A}$ | $2.163(2)$ |
| $\mathrm{Co}(1)-\mathrm{O}(1) \mathrm{A}$ | 2.173(2) | $\mathrm{Co}(1)-\mathrm{O}(1)$ | 2.173(2) |
| $\mathrm{N}(1) \mathrm{A}-\mathrm{Co}(1)-\mathrm{N}(1)$ | 95.90(11) | $\mathrm{N}(1) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(2)$ | 99.27(7) |
| $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(2)$ | 93.58(7) | $\mathrm{N}(1) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{A}$ | 93.58(7) |
| $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{A}$ | 99.27(7) | $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(2) \mathrm{A}$ | 160.79(9) |
| $\mathrm{N}(1) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(1) \mathrm{A}$ | 153.04(7) | $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(1) \mathrm{A}$ | 94.61(7) |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(1) \mathrm{A}$ | 104.78(6) | $\mathrm{O}(2) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(1) \mathrm{A}$ | 60.19(6) |
| $\mathrm{N}(1) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(1)$ | 94.61(7) | $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{O}(1)$ | 153.04(7) |
| $\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(1)$ | 60.19(6) | $\mathrm{O}(2) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(1)$ | 104.78(6) |

$$
\mathrm{O}(1) \mathrm{A}-\mathrm{Co}(1)-\mathrm{O}(1) \quad 87.01(10)
$$

Symmetry codes for 1: A: $x, y+1, z$; for 2: A: $-x+1, y, z+3 / 2$; for 3: A: $x+1,-y+1 / 2, z+1 / 2 ; \mathrm{B}:-x+1, y-1 / 2,-z+3 / 2$;
for 4: A: $-x+3 / 2, y,-z+1$; B: $x+1,-y+3 / 2, z-1 / 2$; C: $-x+2,-y,-z+1$; for 5: A: $-x, y,-z+1 / 2$; B: $-x+1 / 2, y-1 / 2,-z+1$; for

6: A: $-x+1, y,-z+1 / 2 ; \mathrm{B}:-x+3 / 2,-y+3 / 2,-z+1$;

(a)

(b)

(c)

(d)

(e)

(f)

Fig. S1 The IR spectra of the CPs 1-6 (black lines); The IR spectra of the powder of the CPs 1-6 after catalytic experiments (red lines).

(a)

Fig. S2a The simulated from single-crystal data and obtained from the experiments X-ray powder diffraction patterns of CP 1.

(b)

Fig. S2b The simulated from single-crystal data and obtained from the experiments X-ray powder diffraction patterns of CP 2.

(c)

Fig. S2c The simulated from single-crystal data and obtained from the experiments X-ray powder diffraction patterns of CP 3.


Fig. S2d The simulated from single-crystal data and obtained from the experiments X-ray powder diffraction patterns of CP 4.

(e)

Fig. S2e The simulated from single-crystal data and obtained from the experiments X-ray powder diffraction patterns of CP 5.

(f)

Fig. S2f The simulated from single-crystal data and obtained from the experiments X-ray powder diffraction patterns of CP 6.

(a)

Fig. S3a Cyclic voltammograms of 1-CPE in $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution at various scan rates (from inner to outer: $\left.20,60,100,120,140,160,180 \mathrm{mV} \mathrm{s}^{-1}\right)$.

(b)

Fig. S3b Cyclic voltammograms of 5-CPE in $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution at various scan rates (from inner to outer: $\left.20,60,100,120,140,160,180 \mathrm{mV} \mathrm{s}^{-1}\right)$.

(a)

(b)

Fig. S4 UV-vis absorption spectra at room temperature and main absorption bands for the N donor ligands, $\quad \mathrm{H}_{2} \mathrm{DCTP} \quad$ ligand, and $\quad$ CPs $\quad \mathbf{1 - 6 .}$

(a)

Fig. S5a Absorption spectra of the MB solution during the decomposition reaction under UV irradiation with the presence of CP 2.

(b)

Fig. S5b Absorption spectra of the MB solution during the decomposition reaction under UV irradiation with the presence of CP 3.

(c)

Fig. S5c Absorption spectra of the MB solution during the decomposition reaction under UV irradiation with the presence of CP 4.

(d)

Fig. S5d Absorption spectra of the MB solution during the decomposition reaction under UV irradiation with the presence of CP 5.

(e)

Fig. S5e Absorption spectra of the MB solution during the decomposition reaction under UV irradiation with the presence of CP 6 .

(a)

(b)

(c)

(d)

(e)

(f)

Fig. S6 X-ray powder diffraction patterns of CPs 1-6 after catalytic experiments.


Fig. S7 Three cycling runs of CPs 1-6 in the degradation of MB solution.

