Supporting Information

Synthesis and Characterisation of Tetranuclear Ruthenium Polyhydrido Clusters with Pseudo-Tetrahedral Geometry

Hajime Kameo,^a Yutaka Ito,^a Ryuichi Shimogawa,^a Asuka Koizumi, ^a Hiroki Chikamori, ^a Junko Fujimoto,^a Hiroharu Suzuki, ^{a,*} and Toshiro Takao^{a,b,*}

^a Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan Address here.

^b JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 3332-0012, Japan.

Contents

- 1. Crystal data and results of XRD studies for 5, 7, 8, 8', and 10'
- 2. NMR spectra of 5-BF4, 5-BPh4, 5'-BF4, 7-BF4, 7-BPh4, 7'-BF4, 8, 8', and 10'
- 3. Results of DFT calculations for 5"-A, 5"-B, 7", 8", and 10"

1. Crystal data and results of XRD studies for 5, 7, 8, 8', and 10'

	5	7	8	8′	10'
Formula	$C_{90}H_{114}B_2N_2O_4Ru_4$	C ₆₄ H ₈₇ B Ru ₄	C40 H66 Ru4	C44 H74 Ru4	C44 H72 Ru4
Formula weight	1713.73	1271.43	951.20	1007.31	1005.29
Crystal description	platelet	block	block	needle	block
Crystal color	black	black	black	black	black
Crystal size (mm)	$0.429 \times 0.397 \times 0.086$	0.372×0.119×0.086	0.145×0.137×0.118	0.211×0.124×0.100	0.341×0.133×0.131
Crystallizing solution	CH ₃ NO ₂ /CH ₃ OH (25 °C)	Acetone/Et ₂ O (25 °C.)	THF (70 °C)	Hexane (-30 °C)	Hexane (-30 °C)
Crystal system	monoclinic	monoclinic	triclinic	orthorhombic	orthorhombic
Space group	<i>P2</i> ₁ / <i>c</i> (#14)	<i>P2</i> ₁ / <i>c</i> (#14)	P-1 (#2)	Pnma (#62)	Pnma (#62)
a (Å)	23.6293(7)	16.8721(5)	10.8082(4)	15.3508(6)	15.2441(3)
<i>b</i> (Å)	19.3197(6)	20.1549(6)	10.8464(3)	17.1336(6)	17.0861(5)
<i>c</i> (Å)	17.7321(5)	17.1805(5)	18.0784(7)	16.1327(6)	16.0747(3)
α (°)			83.5770(10)		
β (°)	95.691(7)	93.491(7)	84.2980(10)		
γ (°)			66.7760(10)		
$V(Å^3)$	8055.0(4)	5831.5(3)	1931.83(12)	4243.1(3)	4186.85(17)
Z value	4	4	2	4	4
D_{calcd} (g/cm ³)	1.413	1.053	1.635	1.577	1.595
Measurement temp. (°C)	-120	-120	-150	-120	-120
μ (Mo _{Ka}) (mm ⁻¹)	0.787	1.513	1.559	1.425	1.444
$2\theta_{max}$ (deg)	55.0	55.0	55	55	55
No. of reflections collected	77914	56383	19142	66543	44573
No. of unique reflections	18394 ($R_{\rm int} = 0.0792$)	13323 ($R_{\rm int} = 0.0573$)	8661 ($R_{\rm int} = 0.0349$)	5007 ($R_{\rm int} = 0.0963$)	4934 ($R_{int} = 0.0888$)
No. Reflections observed (> 2σ)	15395	11190	6977	4488	4777
Abs. correction type	Empirical	Empirical	Empirical	Numerical	Numerical
Abs. transmission	0.6736(min.) 1.000(max.)	0.7176 (min.) 1.0000 (max.)	0.7423 (min.) 1.0000 (max.)	0.8179 (min.) 0.9153 (max.)	0.7186 (min.) 0.8436 (max.)
$R_1 [I > 2\sigma (I)]$	0.0387	0.0368	0.0356	0.0313	0.0263
$wR_2[I > 2\sigma(I)]$	0.0917	0.0776	0.0942	0.0742	0.0689
R_1 (all data)	0.0500	0.0489	0.0471	0.0359	0.0272
wR_2 (all data)	0.0968	0.0816	0.1024	0.0764	0.0696
Data / restraints / parameters	18394 / 0 / 974	13323 / 0 / 766	8661 / 0 / 381	5007 / 0 / 260	4934 / 0 / 249
Goodness of fit on F^2	1.020	1.068	1.092	1.047	1.015
Largest diff. peak and hole $(e \cdot \mathring{A}^{-3})$	1.142 and -1.115	1.364 and -0.929	1.801 and -1.252	0.759 and -0.789	0.717 and -0.604

Table S-1. Crystallographic Data for 5, 7, 8, 8', and 10'

Figure S-1. ORTEP diagram of the cationic part of $[(Cp*Ru)_4H_8]^{2+}(BPh_4^{-})_2$ (**5-BPh**₄), with thermal ellipsoids drawn at 30% probability (left), and the structure of a tetraphenylborate salt of **5** (right). Hydrogen atoms on the Cp* groups were omitted for clarity.

Figure S-2. Expanded view of the Ru₄ core of 5-BPh₄

Table S-2. Selected bond lengths (Å) and angles (deg) of 5-BPh4

Ru(1)–Ru(2)	2.6684(3)	Ru(1)-Ru(3)	3.0382(3)	Ru(1)-Ru(4)	3.0323(3)
Ru(2)–Ru(3)	3.0428(3)	Ru(2)-Ru(4)	3.0535(3)	Ru(3)-Ru(4)	2.6751(3)
Ru(2)-Ru(1)-Ru(3)	64.061(8)	Ru(2)-Ru(1)-Ru(4)	64.405(8)	Ru(3)-Ru(1)-Ru(4)	52.293(7)
Ru(1)-Ru(2)-Ru(3)	63.883(8)	Ru(1)-Ru(2)-Ru(4)	63.585(8)	Ru(3)-Ru(2)-Ru(4)	52.054(7)
Ru(1)-Ru(3)-Ru(2)	52.056(7)	Ru(1)-Ru(3)-Ru(4)	63.741(9)	Ru(2)-Ru(3)-Ru(4)	64.180(10)
Ru(1)- $Ru(4)$ - $Ru(2)$	52.010(7)	Ru(1)-Ru(4)-Ru(3)	63.967(8)	Ru(2)-Ru(4)-Ru(3)	63.766(10)

Figure S-3. ORTEP diagram of the cationic part of $[(Cp*Ru)_4H_7]^+(BPh_4^-)$ (**7-BPh**₄), with thermal ellipsoids drawn at 30% probability (left), and the structure of a tetraphenylborate salt of **5** (right). Hydrogen atoms on the Cp* groups were omitted for clarity.

Figure S-4. Expanded view of the Ru₄ core of 7-BPh₄

Table S-3. Selected bond lengths (Å) and angles (deg) of 7-BPh4

Ru(1)–Ru(2)	3.0006(4)	Ru(1)– $Ru(3)$	2.8474(4)	Ru(1)-Ru(4)	2.8207(3)
Ru(2)–Ru(3)	2.8034(3)	Ru(2)-Ru(4)	2.8429(3)	Ru(3)-Ru(4)	2.9870(4)
Ru(2)-Ru(1)-Ru(3)	57.216(8)	Ru(2)-Ru(1)-Ru(4)	58.367(9)	Ru(3)-Ru(1)-Ru(4)	63.604(11)
Ru(1)-Ru(2)-Ru(3)	58.641(8)	Ru(1)-Ru(2)-Ru(4)	57.649(8)	Ru(3)-Ru(2)-Ru(4)	63.876(10)
Ru(1)- $Ru(3)$ - $Ru(2)$	64.143(9)	Ru(1)-Ru(3)-Ru(4)	57.77(1)	Ru(2)-Ru(3)-Ru(4)	58.71(1)
Ru(1)- $Ru(4)$ - $Ru(2)$	63.99(1)	Ru(1)– $Ru(4)$ – $Ru(3)$	58.633(8)	Ru(2)-Ru(4)-Ru(3)	57.418(8)

Figure S-5. ORTEP diagram of $[(Cp*Ru)_4H_6]$ (8), with thermal ellipsoids drawn at 30% probability (left), and the expanded view of the Ru₄ core of 8 (right). Hydrogen atoms on the Cp* groups were omitted for clarity.

Ru(1)-Ru(2)	2.7482(4)	Ru(1)– $Ru(3)$	2.9568(4)	Ru(1)-Ru(4)	2.9743(4)
Ru(2)-Ru(3)	2.9861(4)	Ru(2)-Ru(4)	2.9787(4)	Ru(3)– $Ru(4)$	2.7400(5)
Ru(2)-Ru(1)-Ru(3)	62.999(11)	Ru(2)-Ru(1)-Ru(4)	62.587(11)	Ru(3)-Ru(1)-Ru(4)	55.028(10)
Ru(1)-Ru(2)-Ru(3)	61.915(11)	Ru(1)-Ru(2)-Ru(4)	62.425(11)	Ru(3)-Ru(2)-Ru(4)	54.692(10)
Ru(1)-Ru(3)-Ru(2)	55.085(10)	Ru(1)-Ru(3)-Ru(4)	62.810(11)	Ru(2)-Ru(3)-Ru(4)	62.515(11)
Ru(1)-Ru(4)-Ru(2)	54.99(1)	Ru(1)-Ru(4)-Ru(3)	62.162(11)	Ru(2)-Ru(4)-Ru(3)	62.79(1)

Table S-4. Selected bond lengths (Å) and angles (deg) of 8

Figure S-6. ORTEP diagram of $[(Cp^{Et}Ru)_4H_6]$ (8'), with thermal ellipsoids drawn at 30% probability. Hydrogen atoms on the Cp^{Et} groups were omitted for clarity.

Table S-5.	Selected	bond	lengths	(Å)	and	angles	(deg)	of 8'
------------	----------	------	---------	-----	-----	--------	-------	-------

$\operatorname{Ru}(1)$ – $\operatorname{Ru}(1')$	2.9841(4)	Ru(1)–Ru(2)	2.8670(3)	Ru(1)– $Ru(3)$	2.8693(3)
Ru(2)-Ru(3)	2.9695(4)				
Ru(1')-Ru(1)-Ru(2)	58.638(6)	Ru(1')-Ru(1)-Ru(3)	58.666(5)	Ru(2)-Ru(1)-Ru(3)	62.351(9)
Ru(1)-Ru(2)-Ru(1')	62.722(11)	Ru(1)-Ru(2)-Ru(3)	58.863(8)	Ru(1)-Ru(3)-Ru(1')	62.665(11)
Ru(1)-Ru(3)-Ru(2)	58.785(8)				

Scheme S-1. Superimposition of the Ru₄ core of 8"

Figure S-7. ORTEP diagram of $[(Cp^{Et}Ru)_4H_4]$ (10'), with thermal ellipsoids drawn at 30% probability (left), and the expanded view of the Ru₄ core of 10' (right)... Hydrogen atoms on the Cp^{Et} groups were omitted for clarity.

Ru(1)–Ru(1')	2.7868(3)	Ru(1)–Ru(2)	2.7883(3)	Ru(1)-Ru(3)	2.7922(2)
Ru(2)-Ru(3)	2.7941(3)				
Ru(1')-Ru(1)-Ru(2)	60.063(4)	Ru(1')-Ru(1)-Ru(3)	60.017(4)	Ru(2)-Ru(1)-Ru(3)	60.091(7)
Ru(1)-Ru(2)-Ru(1')	59.873(8)	Ru(1)-Ru(2)-Ru(3)	59.886(6)	Ru(1)-Ru(3)-Ru(1')	59.964(9)
Ru(1)-Ru(3)-Ru(2)	60.023(7)				

Table S-6. Selected bond lengths (Å) and angles (deg) of 10^\prime

2. ¹H and ¹³C NMR spectra of **5-BF4**, **5-BPh4**, **7-BF4**, **7-BPh4**, **8**, **8'**, **10**, and **10'**

Figure S-8. ¹H NMR spectrum of $[(Cp*Ru)_4H_8]^{2+}(BF_4^{-})_2$ (**5-BF**₄) (methanol-d₄, 400 MHz, 25 °C)

Figure S-9. ¹³C{¹H} NMR spectrum of [(Cp*Ru)₄H₈]²⁺(BF₄⁻)₂ (**5-BF**₄) (methanol-*d*₄, 400 MHz, 25 °C)

Figure S-10. ¹H NMR spectrum of [(Cp*Ru)₄H₈]²⁺(BPh₄⁻)₂ (5-BPh₄) (CD₂Cl₂, 400 MHz, 25 °C)

Figure S-11. ¹³C{¹H} NMR spectrum of $[(Cp*Ru)_4H_8]^{2+}(BPh_4^{-})_2$ (5-BPh₄) (CD₂Cl₂, 400 MHz, 25 °C)

Figure S-12. ¹H NMR spectrum of $[(Cp^{Et}Ru)_4H_8]^{2+}(BF_4^{-})_2$ (**5'-BF**₄) (methanol- d_4 , 400 MHz, 25 °C)

Figure S-13. ¹H NMR spectrum of [(Cp*Ru)₄H₇]⁺(BF₄⁻) (7-BF₄) (acetone-*d*₆, 400 MHz, 25 °C)

Figure S-14. ¹³C{¹H} NMR spectrum of [(Cp*Ru)₄H₇]⁺(BF₄⁻) (7-**BF**₄) (acetone-*d*₆, 100 MHz, 25 °C)

Figure S-15. ¹H NMR spectrum of [(Cp*Ru)₄H₇]⁺(BPh₄⁻) (7-BPh₄) (methanol-*d*₄, 400 MHz, 25 °C)

Figure S-16. ¹³C{¹H} NMR spectrum of [(Cp*Ru)₄H₇]⁺(BPh₄⁻) (7-**BPh**₄) (acetone-*d*₆, 100 MHz, 25 °C)

Figure S-17. ¹H NMR spectrum of [(Cp^{Et}Ru)₄H₇]⁺(BF₄⁻) (**7'-BF**₄) (methanol-*d*₄, 400 MHz, 25 °C)

Figure S-18. ¹³C{¹H} NMR spectrum of $[(Cp^{Et}Ru)_4H_7]^+(BF_4^-)(7'-BF_4)$ (methanol-*d*₄,, 100 MHz, 25 °C)

Figure S-20. ¹³C{¹H} NMR spectrum of (Cp*Ru)₄H₆ (8) (C₆D₆, 100 MHz, 25 °C)

Figure S-21. ¹H NMR spectrum of (Cp^{Et}Ru)₄H₆ (8') (C₆D₆, 400 MHz, 25 °C)

Figure S-22. Hydrido signals of isotopomers of **8'**, $(Cp^{Et}Ru)_4H_nD_{6-n}$ (n = 1 – 6), obtained upon heating at 100 °C in C₆D₆ for 60 h.

Figure S-23. ¹H NMR spectrum of (Cp^{Et}Ru)₄H₄ (10') (C₆D₆, 400 MHz, 25 °C)

Figure S-24. ¹³C{¹H} NMR spectrum of (Cp^{Et}Ru)₄H₄ (10') (C₆D₆, 100 MHz, 25 °C)

Figure S-25. Hydrido signals of isotopomers of **10'**, $(Cp^{Et}Ru)_4H_nD_{4-n}$ (n = 1 – 4), obtained upon heating at 140 °C in C₆D₆ for 24 h

3. Results of DFT calculations for 5"-A, 5"-B, 7", 8", and 10"

Figure S-26. Optimized structure of $[(CpRu)_4H_8]^{2+}(A)$ 5"-A, (B) 5"-B

Figure S-27. Optimized structure of $[(CpRu)_4H_7]^+(7'')$

Figure S-29. Optimized structure of $[(CpRu)_4H_4]$ (10")