Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Modulation of the CO₂-Fixation in Dinickel-Azacryptands

F. Möller,^a L. Castañeda-Losada,^a J. R. C. Junqueira,^a R. G. Miller,^a M. L. Reback,^a B. Mallick,^a M. van Gastel^b and U.-P. Apfel^{a*}

^aRuhr University Bochum, Inorganic Chemistry I / Bioinorganic Chemistry, Universitätsstraße 150, 44801 Bochum (Germany)

^bMax-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim (Germany)

General synthetic procedure for [Ni₂La^R(**HCO**₃)]: La^R (0.062 mmol) was dissolved in 2 mL MeCN/MeOH or MeCN/EtOH 4:1. A solution of Ni(ClO₄)₂·6H₂O (0.12 mmol) in MeCN/EtOH 4:1 was added to the solution. CO₂ was streamed through the solution for 10 min. The mixture was stirred over night. The solvent was removed under reduced pressure and the residue was precipitated from MeCN/Et₂O, MeCN/hexane or by slow evaporation of the solvent.

 $[Ni_2L_A^{Me}(HCO_3)](CIO_4)_3$: blue solid, 93 %. ESI-MS calc. for $[C_{40}H_{60}CIN_8Ni_2O_7]^+$: m/z = 915.30. Found: m/z = 914.9. IR (KBr, cm⁻¹): 3345, 2917, 2774, 1654, 1612, 1464, 1440, 1093, 714, 626.

 $[Ni_2L_A^F(HCO_3)](CIO_4)_3$: red solid, 89 %. ESI-MS calc. for $[C_{37}H_{51}CIF_3N_8Ni_2O_7]^+$: m/z = 927.22. Found: m/z = 927.9. IR (KBr, cm⁻¹): 3447, 3270, 2963, 2925, 2856, 1738, 1676, 1634, 1603, 1460, 1304, 1150, 1099, 982, 884, 841, 799, 708, 628.

 $[Ni_2L_A^{OMe}(HCO_3)](CIO_4)_3$: blue solid, 98 %. ESI-MS calc. for $[C_{40}H_{60}CIN_8Ni_2O_{10}]^+$: m/z = 963.28. Found: m/z = 963.9. IR (KBr, cm⁻¹): 3419, 2910, 2781, 1620, 1467, 1340, 1302, 1145, 1113, 1087, 629.

 $[Ni_2L_A^{Fur}(HCO_3)](CIO_4)_3$: green solid, 96 %. ESI-MS calc. for $[C_{31}H_{48}CIN_8Ni_2O_{10}]^+$: m/z = 842.19. Found: m/z = 842.8. IR (KBr, cm⁻¹): 3444, 3304, 2926, 2858, 1637, 1521, 1454, 1088, 1016, 975, 926, 803, 626.

General synthetic procedure for [Ni₂L_A^R(H¹³CO₃)]: L_A^R (0.062 mmol) and Ni(ClO₄)₂·6H₂O (0.12 mmol) were dissolved in 5 mL degassed MeCN/MeOH 4:1 and stirred under N₂. ¹³CO₂ was streamed through the solution. The mixture was stirred over night. The solvent was removed under reduced pressure and dried in vacuum.

 $[Ni_2L_A^{Me}(H^{13}CO_3)](CIO_4)_3:$ blue solid, 42 %. ESI-MS calc. for $[{}^{12}C_{39}{}^{13}CH_{60}CIN_8Ni_2O_7]^+: m/z = 918.23$. Found: m/z = 918.00. IR (KBr, cm⁻¹): 3510, 3267, 2953, 2878, 1645, 1620, 1450, 1379, 1261, 1093, 324, 802, 625.

 $[Ni_2L_A^F(H^{13}CO_3)](CIO_4)_3$: red solid, 52 %. ESI-MS calc. for $[{}^{12}C_{36}{}^{13}CH_{53}CIF_3N_8Ni_2O_7]^+$: m/z = 930.24. Found: m/z = 930.00. IR (KBr, cm⁻¹): 3531, 3277, 3072, 2941, 2881, 1697, 1626, 1602, 1456, 1304, 1103, 986, 878, 709, 627.

 $[Ni_2L_A^{OMe}(H^{13}CO_3)](CIO_4)_3$: blue solid, 38 %. ESI-MS calc. for $[{}^{12}C_{39}{}^{13}CH_{61}CIN_8Ni_2O_{10}]^+$: m/z = 965.29. Found: m/z = 965.80. IR (KBr, cm⁻¹): 3537, 3265, 2949, 2872, 2853, 1636, 1605, 1464, 1337, 1304, 1092, 843, 625.

 $[Ni_2L_A^{Fur}(H^{13}CO_3)](CIO_4)_3$: green solid, 79 %. ESI-MS calc. for $[{}^{12}C_{30}{}^{13}CH_{49}CIN_8Ni_2O_{10}]^+$: m/z = 845.20. Found: m/z = 845.8. IR (KBr, cm⁻¹): 3528, 3273, 2930, 2864, 1623, 1483, 1448, 1379, 1099, 1016, 982, 926, 804, 625.

General synthetic procedure for [Ni₂L_A^R(N₃)](ClO₄)₃: L_A^R (0.038 mmol) was dissolved in MeCN/MeOH or MeCN/EtOH 4:1. A solution of Ni(ClO₄)₂·6H₂O (0.076 mmol) in MeCN/EtOH 4:1 was added to the solution. After 30 min NaN₃ (0.038 mmol), dissolved in EtOH/H₂O (1:1), was added to the solution. The mixture was stirred overnight. The solvent was removed under reduced pressure and the residue was precipitated from MeCN/Et₂O or by slow evaporation of the solvent.

 $[Ni_2L_A^F(N_3)](CIO_4)_3$: crystallization from MeCN/EtOH, green crystals, 89 %. ESI-MS calc. for $[C_{36}H_{51}F_3N_{11}Ni_2]^+$: m/z = 810.30. Found: m/z = 809.6. IR (KBr, cm⁻¹): 3447, 3019, 2925, 2872, 2197, 2114, 2048, 1627, 1598, 1457, 1299, 1146, 1114, 1083, 629.

 $[Ni_2L_A^{Me}(N_3)](CIO_4)_3$: blue-green solid, 92 %. ESI-MS calc. for $[C_{39}H_{60}N_{11}Ni_2 + 2 CIO_4]^+$: m/z = 996.27. Found: m/z = 997.73. IR (KBr, cm⁻¹): 3421, 2922, 2872, 2781, 2194, 2118, 2058, 1616, 1445, 1146, 1085, 629.

 $[Ni_2L_A^{Py}(N_3)](ClO_4)_3$: violett solid, 67 %. ESI-MS calc. for $[C_{33}H_{45}Cl_2N_{14}Ni_2 + 2 ClO_4]^+$: m/z = 951.16. Found: m/z = 951.78. IR (KBr, cm⁻¹): 3429, 2931, 2119, 2065, 1610, 1458, 1145, 1086, 630.

 $[Ni_2L_A^{Fur}(N_3)](ClO_4)_3$: green solid, 65 %. ESI-MS calc. for $[C_{30}H_{42}N_{11}Ni_2O_3 + 2 CH_3OH + 2 ClO_4]^+$: m/z = 982.17 IR (KBr, cm⁻¹): 3418, 2876, 2176, 2067, 1636, 1452, 1145, 1085, 1020, 630.

 $[Ni_2L_A^{OMe}(N_3)](CIO_4)_3$: green solid, 91 %. ESI-MS calc. for $[C_{39}H_{60}N_{11}Ni_2O_3 + CIO_4]^+$: m/z = 1044.26. Found: m/z = 1046.30. IR (KBr, cm⁻¹): 3420, 2937, 2878, 2193, 2122, 1599, 1469, 1441, 139, 1301, 1146, 1114, 1086, 842, 711, 627.

[Ni₂L_A^{Thio}(N₃)](ClO₄)₃: green solid, 87 %. IR (KBr, cm⁻¹): 3554, 3478, 3416, 3247, 2926, 2855, 2191, 2105, 2056, 1622, 1442, 1087, 808. 629.

 $[Ni_2L_A^{OH}(N_3)](CIO_4)_3$: dark green solid, 93 %. ESI-MS calc. for $[C_{36}H_{55}N_{11}Ni_2O_3 + 2 CIO_4]^+$: m/z = 1003.21. Found: m/z = 1003.85. IR ((KBr, cm⁻¹): 3556, 3417 (br), 1326, 2931, 2871, 2189, 2116, 1603, 1461, 1310, 1144, 1114, 1084, 841, 629.

Synthesis of [(Tren)Ni(CH₃CN)₂](ClO₄)₂: Li^{tBu} or Li^H (0.066 mmol) was dissolved in 3 mL MeCN/MeOH (4:1) and Ni(ClO₄)₂·6H₂O was added. The solution was stirred for 1d at RT. The solvent was removed under reduced pressure and the violet solid was crystallized by slow diffusion of Et₂O into a solution of the compound, dissolved in MeCN/EtOH. Violet crystals were isolated with 33% (0.022 mmol) yield. ESI-MS calc. for [C₆H₂₀N₄NaNi + 2 CH₃CN + 4 ClO₄]⁺: *m/z* = 706.93. Found: *m/z* = 706.9. IR (KBr, cm⁻¹): 2494, 3350, 3299, 2934, 2898, 1602, 1476, 1143, 1089, 984, 828, 628.

Synthesis of [Ni₂L_A^{H,para} **(CN)]:** L_A^{H,para} (0.084 mmol) was dissolved in MeCN (3 mL) and Ni(ClO₄)₂·6H₂O (0.167 mmol) was added. The solution was stirred for 2d at RT. The solvent was removed under reduced pressure to give a violet solid with 96 % (0.081 mmol). ESI-MS calc. for [C₃₈H₅₈N₉Ni₂]: m/z = 756.34. Found: m/z = 756.37. IR (KBr, cm⁻¹): 3442, 3262, 2938, 2883, 2310, 2287, 2022, 1636, 1454, 1089, 807, 627.

Figure S1. Molecular structure of [(Tren)Ni(CH₃CN)₂](ClO₄)₂. Hydrogen atoms and counter ions omitted for clarity.

Figure S2. Molecular structures of a) L_1^F , b) L_1^{Me} and c) L_1^{OMe} . Hydrogen atoms omitted for clarity.

Figure S3. Molecular structures of a) L_A^{Py} and b) L_A^{OH} . Hydrogen atoms and counter ions omitted for clarity.

Figure S4. UV-vis spectra (MeCN/MeOH 20%, RT) of a) [Ni₂La^H], b) [Ni₂La^F], c) [Ni₂La^{Me}], d) [Ni₂La^{OMe}], e) [Ni₂La^{Fur}], f) [Ni₂La^{Thio}], g) [Ni₂La^{Py}], h) [Ni₂La^{tBu}] (black) and after CO₂-purging (green).

Figure S5. UV-vis spectra (MeCN/MeOH 20%, RT) of a) [Ni₂L_A^{OH}], b) [Ni₂L_A^{OH,Me}] and c) [Ni₂L_A^{H,para}] (black) and after CO₂-purging (green).

Figure S6. ESI spectra of the mass-peak $[Ni_2L_A^R](CIO_4)_3$ (black: measured, red: simulated) of a) $[Ni_2L_A^H]$, b) $[Ni_2L_A^F]$, c) $[Ni_2L_A^{Me}]$, d) $[Ni_2L_A^{OMe}]$, e) $[Ni_2L_A^{tBu}]$, f) $[Ni_2L_A^{Fy}]$, g) $[Ni_2L_A^{Fur}]$ and h) $[Ni_2L_A^{Thio}]$.

Figure S7. ESI spectra of the mass-peak [Ni₂L_A^R(HCO₃)](ClO₄)₂ (black: measured, red: simulated) of a) [Ni₂L_A^H(HCO₃)],¹ b) [Ni₂L_A^F(HCO₃)], c) [Ni₂L_A^{Me}(HCO₃)], d) [Ni₂L_A^{OMe}(HCO₃)] and e) [Ni₂L_A^{Fur}(HCO₃)].

Figure S8. ESI spectra of the mass-peak of $[Ni_2L_A^R(H^{13}CO_3)](CIO_4)_2$ (black: measured, red: simulated) of a) $[Ni_2L_A^H(H^{13}CO_3)], 1 b) [Ni_2L_A^F(H^{13}CO_3)], c) [Ni_2L_A^{Me}(H^{13}CO_3)], d) [Ni_2L_A^{OMe}(H^{13}CO_3)] and e) [Ni_2L_A^{Fur}(H^{13}CO_3)]. (*signal from neighboring mass peak)$

Figure S9. Observed color change during the CO₂-coordination in **[Ni₂L_A^F]**, left: before CO₂ addition, right: after CO₂-purging.

Figure S10. Change in absorption at 475 nm from the coordination of CO₂ in [Ni₂L_A^F].

Table S1. k_{obs} values obtained from the change in absorption of L^H (470 nm), L^F (475 nm), L^{Me} (550 nm), L^{OMe} (550 nm) and L^{Fur} (550 nm) from a pseudo 1. order plot at different temperatures, [CO₂] = 280 mM.²

	15°C	20°C	25°C	30°C	35°C	40°C	45°C
LH	2.379 · 10 ⁻²	n.a	2.766 · 10 ⁻²	n.a	3.443 · 10 ⁻²	n.a	4.449 · 10 ⁻²
LF	2.106 · 10 ⁻⁴	n.a	8.327 · 10 ⁻³	n.a	1.267 · 10 ⁻²	n.a	2.150 · 10 ⁻²
L ^{Me}	4.910 · 10 ⁻³	5.940 · 10 ⁻³	6.280 · 10 ⁻³	9.190 · 10 ⁻³	1.008 · 10 ⁻²	1.035 · 10 ⁻²	1.229 · 10 ⁻²
L ^{OMe}	2.920 · 10 ⁻³	n.a.	5.410 · 10 ⁻³	n.a.	9.850 · 10 ⁻³	n.a.	1.560 · 10 ⁻²
L ^{Fur}	1.646 · 10 ⁻⁴	3.459 · 10 ⁻⁴	4.215 · 10 ⁻⁴	8.248 · 10 ⁻⁴	n.a	1.509 · 10 ⁻³	2.329 · 10 ⁻³

(n.a = not available/measured)

Table S2. Obtained values from the change in absorption of L^H (470 nm), L^F (475 nm), L^{Me} (550 nm), L^{OMe} (550 nm) and L^{Fur} (550 nm) at different [CO₂]-concentrations at 298.15 K.

	28mM	40 mM	56mM	93 mM	140 mM	210 mM	280 mM
LH	n.a	$1.106 \cdot 10^{-2}$	n.a	$1.413 \cdot 10^{-2}$	$1.809 \cdot 10^{-2}$	$2.153 \cdot 10^{-2}$	$2.766 \cdot 10^{-2}$
LF	3.420 · 10 ⁻³	n.a	$4.010 \cdot 10^{-3}$	n.a	6.05 · 10 ⁻³	n.a	8.310 · 10 ⁻³
L ^{Me}	n.a	n.a	n.a	3.230 · 10 ⁻³	4.06· 10 ⁻³	4.900 · 10 ⁻³	$6.280 \cdot 10^{-3}$
L ^{OMe}	n.a	n.a	n.a	1.700 · 10 ⁻³	2.360 · 10 ⁻³	3.350 · 10 ⁻³	5.390 · 10 ⁻³
L ^{Fur}	n.a	n.a	n.a	2.450 · 10 ⁻³	2.630 · 10 ⁻³	3.410 · 10 ⁻³	4.210 · 10 ⁻³

(*n.a* = not available/measured)

Table S3. Obtained values from stopped-flow measurements at different CO2-concentrations and the resulting ΔH^{\dagger} and ΔS^{\dagger} values, calculated from the Eyring-plot.

	k₂ [M ⁻¹ s ⁻¹]	ΔH [‡] [kJ/mol]	ΔS [‡] [J/mol·K]
LH	$6.70 \cdot 10^{-2} \pm 5.00 \cdot 10^{-3}$	7.55 <u>+</u> 1.07	2.64 ± 3.55
Ľ	$1.97 \cdot 10^{-2} \pm 3.10 \cdot 10^{-3}$	36.93 <u>+</u> 1.04	83.93 <u>+</u> 3.50
L ^{Me}	$1.60 \cdot 10^{-2} \pm 1.10 \cdot 10^{-3}$	23.55 ± 2.62	37.64 ± 8.66
L ^{OMe}	$1.93 \cdot 10^{-2} \pm 2.70 \cdot 10^{-3}$	43.40 ± 7.28	102.72 ± 23.67
L ^{Fur}	9.75 ·10 ⁻⁴ ± 1.08 ·10 ⁻⁴	23.539 ± 2.62	37.59 <u>+</u> 8.65

Figure S11. Eyring plot for the CO₂-fixation in [Ni₂L_A^H] (red, 470 nm), [Ni₂L_A^F] (black, 475 nm), [Ni₂L_A^{Me}] (violet, 550 nm) and [Ni₂L_A^{Fur}] (blue, 550 nm) and [Ni₂L_A^{OMe}] (green, 550 nm) in MeCN at different temperatures. [CO₂] = 280 mM.

Figure S12. UV-vis spectra (MeCN/MeOH 20%, RT) of [Ni₂L_A^R(N₃)].

Figure S13. Cyclic voltammograms (100 mV/s) of dinickel compounds [Ni₂La^F], [Ni₂La^{Me}] and [Ni₂La^{tBu}] a) and [Ni₂La^{Fy}], [Ni₂La^{Fur}] and [Ni₂La^{Thio}], b) in comparison to [Ni₂La^H] in degassed MeCN (100 mM TBAPF₆) without CO₂.

Figure S19. $^{\rm 13}C$ NMR spectrum (CDCl_3, 100 MHz) of $L_l^{\rm Me}.$

Figure S22. ¹H NMR spectrum (CDCl₃, 200 MHz) of hexa-imine L_I^{OMe}.

Figure S31. ¹³C NMR spectrum (CDCl₃, 100 MHz) of L_A^{OH,Me}.

	[(Tren)Ni(CH ₃ CN) ₂](ClO ₄) ₂	[Ni ₂ L _A ^{Thio}](ClO ₄) ₄		
Empirical formular	C10H24Cl2N6NiO8	C38H61Cl4N12Ni2O18S3*		
Formular weight [g·mol⁻¹]	485.96	1329.35		
Temperature [K]	110.15	170(2)		
λ [Å]	CuKα, 1.54184	ΜοΚα, 0.71073		
Crystal system	Orthorhombic	Triclinic		
Space group	Cmc21	P-1		
a [Å]	31.9793(9)	10.180(5)		
b [Å]	10.8558(3)	15.292(5)		
c [Å]	11.0677(4)	21.793(5)		
α [°]	90	101.454(5)		
β [°]	90	103.465(5)		
γ [°]	90	102.672(5)		
V [ų]	3842.27(19)	3105.3(5)		
Z	8	2		
ρ _{ber} [g⋅cm ⁻³]	1.680	1.422		
μ [mm ⁻¹]	4.502	0.950		
F(000)	2016.0	1278.0		
2θ for data collection [deg]	8.602 to 152.378	3.002 to 53.32		
Index-ranges	-36 ≤ h ≤ 39,	-12 ≤ h ≤ 12,		
	-4 ≤ k ≤ 13,	-16 ≤ k ≤ 19,		
	-13 ≤ l ≤ 9	-26 ≤ l ≤ 23		
Reflections collected	4184	22448		
Independent reflections	2652	10966		
Rint	0.0308	0.0673		
S ^a)	1.184	1.090		
$R_1 [I \ge 2\sigma(I)]^{0/2}$	0.0493	0.1246		
wR ₂ [all data, F ²] ^{c)}	0.1381	0.3811		
Residual electron density [e Å ⁻³]	0.95/-0.60	1.434/-1.129		
CCDC number	1517786	1517782		
$S = \{\sum [w(F_0^2 - F_c^2)^2]\}/(n-p)\}$	^{0.5} , $n =$ number of reflections,	p = number of parameters.		
^{b)} $R_1 = \sum F_0 F_c \sum F_0 .$ ^{c)} $wR_2 = \{\sum [w(F_0^2 - F_c^2)^2 / \sum [(F_0^2)^s]\}^{0.5}$				

Table S4. Crystallographic data of [(Tren)Ni(CH₃CN)₂](ClO₄)₂ and [Ni₂L_A^{Thio}](ClO₄)₄.

*One perchlorate molecule was squeezed.3

	[Ni ₂ L _A ^F (N ₃)](ClO ₄) ₃	[Ni ₂ L _A ^{OH,Me}](ClO ₄) ₂
Empirical formular	C90H137Cl6F6N29Ni4O28·1.68 C2H6O	C43H63Cl2N10Ni2O11
Formular weight [g·mol⁻¹]	2696.14	1083.81
Temperature [K]	100(2)	170(2)
λ [Å]	CuKα, 1.54184	ΜοΚα, 0.71073
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	P21/c
a [Å]	67.725(3)	13.2094(10)
b [Å]	12.0716(7)	14.0369(6)
c [Å]	29.6586(15)	25.4984(19)
α [°]	90	90
β [°]	90.888(5)	92.086(9)
γ [°]	90	90
V [Å ³]	24245(2)	4724.8(5)
Z	8	4
ρ _{ber} [g⋅cm ⁻³]	1.477	1.524
μ [mm ⁻¹]	2.696	0.981
F(000)	11261.4	2276.0
2θ for data collection [deg]	6.544 to 152.856	6.02 to 56.26
Index-ranges	-85 ≤ h ≤ 64,	-17 ≤ h ≤ 17,
	-15 ≤ k ≤ 13,	-18 ≤ k ≤ 17,
	-37 ≤ l ≤ 34	-33 ≤ ≤ 33
Reflections collected	44869	42885
Independent reflections	22018	10314
Rint	0.1394	0.0441
S ^{a)}	1.039	1.084
$R_1 [I \ge 2\sigma(I)]^{b}$	0.1386	0.0686
wR ₂ [all data, F ²] ^{c)}	0.4619	0.1999
Residual electron density [e Å⁻³]	1.43/-1.13	1.13/-1.29
CCDC number	1517783	1517781

Table S5. Crystallographic data of [Ni₂LA^F(N₃)](ClO₄)₃, and [Ni₂LA^{OH,Me}](ClO₄)₂.

^{a)} $S = \{\sum [w(F_0^2 - F_c^2)^2]\}/(n - p)\}^{0.5}, n = \text{number of reflections}, p = \text{number of parameters}.$ ^{b)} $R_1 = \sum |F_0| ||F_c|| \sum |F_0|.$ ^{c)} $wR_2 = \{\sum [w(F_0^2 - F_c^2)^2 / \sum [(F_0^2)^s]\}^{0.5}$

	Lı ^F	LI ^{OMe}	L _A Py
Empirical formular	C36H39F3N8	C ₃₉ H ₅₁ N ₈ O ₃	C35H62Cl2N12O3*
Formular weight [g·mol⁻¹]	640.44	679.88	769.85
Temperature [K]	170(2)	293(2)	170(2)
λ [Å]	ΜοΚα, 0.71073	ΜοΚα, 0.71073	ΜοΚα, 0.71073
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	Сс	Pna21	C2/c
a [Å]	15.888(3)	14.368(2)	16.679(3)
b [Å]	13.4639(18)	20.759(2)	19.9817(18)
c [Å]	16.442(3)	12.3557(9)	14.9744(15)
α [°]	90	90	90
β [°]	102.98(2)	90	120.298(10)
γ [°]	90	90	90
V [ų]	3427.3(10)	3685.3(7)	4308.9(10)
Z	4	4	4
ρ _{ber} [g⋅cm ⁻³]	1.241	1.225	1.187
μ [mm ⁻¹]	0.087	0.080	0.206
F(000)	1352.0	1460.0	1528.0
2θ for data collection [deg]	5.054 to 56.44	3.84 to 47.96	5.82 to 73.24
Index-ranges	-21 ≤ h ≤ 21,	-16 ≤ h ≤ 16,	-27 ≤ h ≤ 25,
	-17 ≤ k ≤ 17,	-23 ≤ k ≤ 23,	-26 ≤ k ≤ 27,
	-21 ≤ ≤ 21	-13 ≤ l ≤ 14	-24 ≤ l ≤ 24
Reflections collected	17944	24606	39717
Independent reflections	17944	5630	6847
Rint	0.0748	0.0646	0.0520
S ^{a)}	0.782	0.873	1.054
$R_1 [I \ge 2\sigma(I)]^{b}$	0.0793	0.0629	0.0845
wR ₂ [all data, F ²] ^{c)}	0.2570	0.1853	0.2812
Residual electron density [e Å ⁻³]	0.38/-0.43	0.19/-0.21	0.58/-0.41
CCDC number	1517784	1517785	1517950

Table S6. Crystallographic data of L_1^F , L_1^{OMe} and L_A^{Py} .

 $S = \{\sum [w(F_0^2 - F_c^2)^2]\}/(n-p)\}^{0.5}$, n = number of reflections, p = number of parameters.

^{b)} $R_1 = \sum |F_0| |F_c| \sum |F_0|$. ^{c)} $wR_2 = \{\sum [w(F_0^2 - F_c^2)^2 / \sum [(F_0^2)^s]\}^{0.5}$

*One water and acetonitrile molecule was squeezed.³

	LI ^{Me}	LAOH
Empirical formular	C39H48N8	C40H75Cl6N10O16
Formular weight [g·mol⁻¹]	628.86	1148.8
Temperature [K]	170(2)	100(2)
λ [Å]	ΜοΚα, 0.71073	CuKα, 1.54184
Crystal system	Orthorhombic	Triclinic
Space group	Pna2₁	P-1
a [Å]	14.4185(18)	11.1345(2)
b [Å]	20.046(3)	14.5818(3)
c [Å]	12.574(2)	18.3859(4)
α[°]	90	107.412(2)
β [°]	90	101.170(2)
γ [°]	90	102.173(2)
V [ų]	3634.3(9)	2676.69(9)
Z	4	2
ρ _{ber} [g⋅cm ⁻³]	1.149	1.425
μ [mm ⁻¹]	0.070	3.540
F(000)	1160.0	1214.0
2θ for data collection [deg]	5.66 to 56.5	6.64 to 152.72
Index-ranges	-19 ≤ h ≤ 18,	-13 ≤ h ≤ 12,
-	-26 ≤ k ≤ 24,	-18 ≤ k ≤ 18,
	-16 ≤ ≤ 16	-22 ≤ ≤ 22
Reflections collected	26225	51557
Independent reflections	8835	9971
Rint	0.1620	0.0428
S ^{a)}	0.540	1.062
$R_1 [I \ge 2\sigma(I)]^{b}$	0.0595	0.0571
wR ₂ [all data, F ²] ^{c)}	0.1933	0.1532
Residual electron density [e Å ⁻³]	0.26/-0.16	1.57/-1.04
CCDC number	1517787	1517780

Table S7. Crystallographic data of L_{I}^{Me} and L_{A}^{OH} .

^{a)} $S = \{\sum [w(F_0^2 - F_c^2)^2]\}/(n-p)\}^{0.5}, n = \text{number of reflections}, p = \text{number of parameters}.$ ^{b)} $R_1 = \sum |F_0|| |F_c|| \sum |F_0|.$ ^{c)} $wR_2 = \{\sum [w(F_0^2 - F_c^2)^2 / \sum [(F_0^2)^s]\}^{0.5}$ Cartesian coordinates [Angstrom] of geometry optimized structures (including COSMO) of $Ni_2L_A{}^R$.

R=H	
-----	--

28	2.353841000	6.748963000	18.252649000
28	-2.065351000	10.938613000	18.605039000
17	-0.053064000	10.467662000	19.761487000
8	0.877893000	8.156888000	17.970263000
1	0.074322000	7.970698000	17.444056000
1	0.646057000	8.884651000	18.609018000
7	1.834537000	5.667808000	16.461882000
1	2.362709000	6.145899000	15.719039000
7	-3.171824000	9.854023000	20.103306000
1	-4.046486000	9.493404000	19.697224000
7	-3.540193000	12.394114000	18.903180000
7	1.436327000	5.282269000	19.688733000
1	1.414105000	5.911797000	20.500493000
7	3.980417000	5.434837000	18.338626000
7	3,796632000	8,092071000	17,273741000
, 1	3 984310000	8 720846000	18 063869000
7	-0 940292000	12 593665000	17 789692000
, 1	-0 246020000	12 593432000	18 551098000
- 6	-1 225204000	6 744085000	20 123679000
1	-0 347023000	7 224599000	20.123073000
т С	-0.222062000	6 779902000	15 10200000
0	-0.232002000	10 405556000	16 015090000
/	-3.162259000	10.051514000	16.913962000
L C	-2.754700000	10.951514000	12 0020540000
6	-0.402198000	8.626449000	13.893854000
b 1	-2.5/3892000	8.750296000	20.906953000
1	-3.205758000	8.589727000	21.806143000
	-1.582/33000	9.088809000	21.2484/0000
	2.784805000	7.795563000	19.948489000
6	-3.599092000	6.829984000	19.596503000
1	-4.579079000	7.324040000	19.658134000
6	2.995644000	10.342398000	16.510174000
6	-1.122137000	5.462509000	19.542289000
6	1.258688000	12.069996000	16.695310000
6	-1.350873000	7.306711000	16.170573000
1	-1.748216000	6.766695000	17.041335000
6	-3.504621000	5.570016000	18.982362000
6	1.664863000	10.770525000	16.335730000
1	0.932959000	10.073459000	15.912580000
6	-4.294674000	12.037983000	20.144306000
1	-4.504565000	12.942159000	20.744538000
1	-5.273033000	11.618461000	19.849717000
6	3.541398000	12.540398000	17.432316000
6	-2.456559000	7.435714000	20.163910000
6	2.497324000	4.265087000	19.958860000
1	2.295863000	3.387011000	19.319507000
1	2.445526000	3.903617000	21.004165000
6	0.230073000	7.449437000	14.330726000
1	1.069601000	7.040946000	13.752803000
6	3.933351000	11.242421000	17.061697000
1	4.981778000	10.938235000	17.187347000
6	-1.991402000	8.492010000	15.747073000

6	-2.275652000	4.891136000	18.957649000
1	-2.216260000	3.895425000	18.499113000
6	2.212190000	12.954572000	17.246756000
1	1.919384000	13.977435000	17.519002000
6	0.428597000	5.505339000	15.969785000
1	-0.168088000	5,069278000	16.788971000
1	0 424523000	4 763077000	15 143942000
6	-1 503660000	9 147165000	1/ 595622000
1	-2 000555000	10 040220000	14.333022000
L C	-2.000555000	10.049529000	10 694171000
0	3.093210000	4.810364000	19.0041/1000
1	4.149913000	5.587444000	20.425646000
Ţ	4.63/435000	3.993287000	19.793533000
6	-4.415284000	12.3/1484000	17.695588000
1	-3.972199000	13.016431000	16.920151000
1	-5.415366000	12.786297000	17.924352000
6	-4.528452000	10.952409000	17.159037000
1	-5.043026000	10.288706000	17.878595000
1	-5.131605000	10.941275000	16.231423000
6	5.014829000	7.277522000	17.046596000
1	5.920745000	7.909775000	16.956363000
1	4.901888000	6.753846000	16.078981000
6	0.122057000	4.598555000	19.617315000
1	0.012015000	3.938038000	20.506676000
1	0.140224000	3.912643000	18.749950000
-	2,449338000	4.329357000	16.662125000
1	2 480723000	3 756884000	15 713802000
1	1 793790000	3 764158000	17 345027000
5	2 925311000	9 449785000	21 97/385000
1	2.140227000	10 217933000	21.974505000
⊥ 1	3 915308000	9 937127000	22 005700000
⊥ 1	2 7 (1 9 7 0 0 0 0	9.93/12/000	22.003700000
⊥ ⊂	2.781879000	0.905205000	22.92000000
6 1	-3.532882000	11.007795000	20.969339000
1	-4.155/82000	10.688445000	21.8288/1000
Ţ	-2.595994000	11.427222000	21.381015000
6	3.426593000	8.947059000	16.104467000
1	2.619922000	8.455987000	15.531679000
1	4.301315000	9.025696000	15.428476000
6	-3.229174000	8.980467000	16.470862000
1	-4.102396000	8.861657000	15.796012000
1	-3.419317000	8.350861000	17.357761000
6	3.867592000	4.448068000	17.219106000
1	4.223674000	3.452245000	17.546159000
1	4.543848000	4.766231000	16.408564000
6	-0.173183000	12.526349000	16.502078000
1	-0.697234000	11.858192000	15.795037000
1	-0.168948000	13.531906000	16.040204000
6	2.857971000	8.529384000	20.857788000
6	5.196922000	6.281643000	18.187894000
1	6.099214000	5.660893000	18.018453000
1	5 349659000	6 825158000	19 137348000
÷	-1 769160000	13 820220000	17 908631000
1	-2,279530000	13,989252000	16,944323000
<u>-</u> 1	-1 144008000	14 71510000	18 00206000
- 6	-2 779009000	13 666176000	19 0/2005000
1	-3 465258000	1/ 537236000	19 066255000
⊥ 1	-3.403230000	12 625100000	19.00020000
⊥ 1		LJ.0JJJYUUU E 107701000	20.013/11000
\perp	-4.394384000	2.10//81000	18.538184000

1	4.279569000	13.237406000	17.847921000
1	-0.044740000	9.133606000	12.990091000

28	2.352371000	6.751884000	18.242258000
28	-2.063523000	10.952099000	18.592954000
17	-0.038848000	10.487490000	19.732097000
8	0.878424000	8.159897000	17.964109000
1	0.057146000	7.960841000	17.470293000
1	0.662022000	8.897415000	18.597636000
7	1.839295000	5.660543000	16.454057000
1	2.371018000	6.135403000	15.711586000
7	-3.154607000	9.869458000	20.104236000
1	-4.032453000	9.504478000	19.709229000
7	-3.551226000	12.397754000	18.889595000
7	1.432929000	5.279118000	19.678449000
1	1.413356000	5.907910000	20.490750000
7	3.979554000	5.431176000	18.330518000
7	3.795699000	8.093732000	17.274985000
1	3.987592000	8.719477000	18.066684000
7	-0.953612000	12.609532000	17.769941000
1	-0.264990000	12.630946000	18.536224000
6	-1.205449000	6.758038000	20.119280000
1	-0.321412000	7.232826000	20.560297000
6	-0.226396000	6.777929000	15.484772000
7	-3.167828000	10.398809000	16.913878000
1	-2.776085000	10.946102000	16.134768000
6	-0.389882000	8.633051000	13.928822000
6	-2.543922000	8.772125000	20.905255000
1	-3.162535000	8.610307000	21.813192000
1	-1.548708000	9.112811000	21.231717000
7	2.793001000	7.773686000	19.954218000
6	-3.584662000	6.865122000	19.604387000
1	-4.571719000	7.342859000	19.661635000
6	2.983878000	10.342335000	16.520064000
6	-1.120247000	5.472800000	19.542227000
6	1.249297000	12.068295000	16.694920000
6	-1.346627000	7.296404000	16.175612000
1	-1.749011000	6.744631000	17.035350000
6	-3.489242000	5.602574000	19.003903000
6	1.655498000	10.770636000	16.330015000
1	0.927379000	10.075781000	15.899851000
-	-4.288937000	12.046584000	20.142574000
1	-4,497745000	12.953921000	20.738208000
1	-5 267885000	11 618480000	19 862492000
÷	3 507146000	12 517648000	17 464660000
6	-2 432905000	7 455494000	20 164931000
6	2 492841000	4 260251000	19 947454000
1	2 291392000	3 382994000	19 307126000
∸ 1	2 439614000	3 897663000	20 992254000
- 6	$ \begin{array}{c} 2 \cdot 3 \cdot 3 \cdot 5 \cdot 5$	7 455695000	14 345676000
1	1 088637000	7 07152000	13 751212000
- 6	3 917796000	11 229/39000	17 003761000
1	1 060200000 1 060200000	10 917197000	17 2/0112000
1	4.900J00UUU	10.24/49/000	II.240112000

6	-1.982676000	8.486392000	15.757788000
6	-2.276401000	4.902174000	18.967145000
1	-2.254176000	3.905081000	18.510985000
6	2.189095000	12.949862000	17.268893000
1	1.918962000	13.974469000	17.553313000
6	0.435598000	5.499597000	15.957932000
1	-0.162651000	5,056323000	16.771864000
1	0 432360000	4 766353000	15 124347000
1	-1 492268000	9 158715000	1/ 620698000
1	-1 972604000	10 061570000	14.02000000
L C	-1.972004000	1 205302000	10 675212000
0	3.091009000	4.803398000	19.075215000
1	4.146057000	5.580485000	20.418527000
Ţ	4.632802000	3.987239000	19.784183000
6	-4.438604000	12.353928000	17.691324000
1	-4.012753000	12.998544000	16.905925000
1	-5.441624000	12.757133000	17.927259000
6	-4.539022000	10.929692000	17.167173000
1	-5.036782000	10.264928000	17.897492000
1	-5.151269000	10.902965000	16.246065000
6	5.012509000	7.277298000	17.042385000
1	5.918825000	7.908584000	16.951515000
1	4.895708000	6.756307000	16.073800000
6	0.117797000	4.599211000	19.607211000
1	0 003996000	3 935940000	20 493877000
1	0.129902000	3 917885000	18 736402000
T G	2 451695000	4 22150000	16 6563402000
0	2.431893000	4.321300000	16.000040000
1	2.482288000	3.748259000	15.708689000
Ţ	1.796083000	3./5/8/5000	1/.3403/3000
6	2.931329000	9.416865000	21.989259000
1	2.154378000	10.193122000	21.867910000
1	3.925585000	9.894731000	22.030047000
1	2.756048000	8.868585000	22.931497000
6	-3.511506000	11.027243000	20.967072000
1	-4.123220000	10.710618000	21.835419000
1	-2.572572000	11.454771000	21.365424000
6	3.424768000	8.951677000	16.109205000
1	2.621617000	8.459670000	15.532658000
1	4.299131000	9.040627000	15.434330000
6	-3.224026000	8.972027000	16.476707000
1	-4 094230000	8 840696000	15 800477000
1	-3 410246000	8 345938000	17 366664000
1	3 869685000	4 443396000	17 211944000
1	4 229709000	2 449007000	17 52040000
1	4.228708000	3.448907000	16 400522000
Ţ	4.544452000	4.762669000	16.400522000
6	-0.1/81/0000	12.533332000	16.489350000
1	-0.699740000	11.864899000	15.781162000
1	-0.162632000	13.536348000	16.022194000
6	2.864208000	8.502925000	20.867472000
6	5.195610000	6.278701000	18.181301000
1	6.097993000	5.658901000	18.009637000
1	5.349048000	6.820087000	19.131876000
6	-1.800289000	13.825665000	17.864540000
1	-2.317924000	13.963538000	16.899296000
1	-1.188203000	14.733914000	18.025275000
6	-2.801789000	13.679224000	19.006876000
1	-3 496117000	14 543826000	19 021716000
- 1	-2 271446000	13 667081000	19 97660200
-	2.2/11110000	TO.001001000	±2.270002000

9	4.400407000	13.359804000	17.998607000
9	-4.580722000	5.048707000	18.467279000
9	0.056258000	9.266458000	12.844562000

R=tBu

28	2.337213000	6.893297000	18.055038000
28	-2.186453000	10.946775000	18.497916000
17	-0.200394000	10.555165000	19.688430000
8	0.767221000	8.190372000	17.910887000
1	0.700824000	8.520522000	17.063875000
1	0.879994000	8.891689000	18.489672000
7	1.671740000	5.690847000	16.426481000
1	2.120558000	6.005524000	15.639361000
7	-3.303526000	9.905647000	19.987726000
1	-4.092269000	9.545254000	19.579028000
7	-3 629644000	12 404836000	18 760979000
7	1 586333000	5 607445000	19 687163000
1	1 579359000	6 203629000	20 437862000
- 7	3 952374000	5 586441000	18 129774000
7	3 707616000	8 11/729000	16 89/129000
1	1 061980000	8 745241000	17 523/8/000
7	-1 073601000	12 557862000	17.618630000
7	-0.363560000	12.708836000	18 245141000
L 6	-0.303300000	6 951267000	20 222002000
1	-1.101270000	7 454578000	20.223093000
L C	-0.420907000	6 76530000	20.019391000
0	-0.436772000	10 204250000	16 949096000
/	-3.341644000	10.394250000	16.848986000
	-2.979285000	10.863/11000	10.094964000
6	-0.633609000	8.543435000	13.860943000
6	-2.705781000	8.849040000	20.865315000
	-3.333956000	8.693591000	21.651511000
	-1.825430000	9.2011/2000	21.2335/1000
	2.914414000	8.178710000	19.655435000
6	-3.523866000	6.813759000	19.645295000
1	-4.428529000	7.226910000	19.646208000
6	2.799339000	10.314891000	16.181941000
6	-0.984925000	5.655409000	19.700477000
6	1.057743000	11.962962000	16.466465000
6	-1.559192000	7.291722000	16.227530000
1	-1.881870000	6.856264000	17.061147000
6	-3.359823000	5.531103000	19.105248000
6	1.468168000	10.704065000	16.042251000
1	0.809355000	10.079228000	15.638140000
6	-4.389400000	12.112476000	20.015530000
1	-4.480092000	12.964881000	20.564762000
1	-5.324991000	11.793880000	19.774048000
6	3.335715000	12.468781000	17.204764000
6	-2.454208000	7.520997000	20.182850000
6	2.685217000	4.646090000	20.025421000
1	2.485196000	3.744936000	19.594448000
1	2.716681000	4.509718000	21.033255000
6	0.00068000	7.386234000	14.366066000
1	0.779041000	7.004865000	13.881198000
6	3.728482000	11.195496000	16.741498000
1	4.681145000	10.921055000	16.812708000
6	-2.211763000	8.436621000	15.733348000
6	-2.065136000	4.977818000	19.145059000
1	-1.918415000	4.071786000	18.764707000
6	1.994940000	12.827408000	17.047955000

1	1.695327000	13.723502000	17.360068000
6	0.229867000	5.516398000	16.075709000
1	-0.266609000	5,199886000	16.904574000
1	0 155906000	1 784237000	15 37153/000
5	-1 756011000	9.029069000	14 557770000
1	-1.750911000	9.020000000	14.337770000
	-2.242815000	9.81/282000	14.195614000
6	4.03/340000	5.146597000	19.545316000
1	4.338476000	5.925925000	20.124503000
1	4.726096000	4.400628000	19.634793000
6	-4.524964000	12.395719000	17.565687000
1	-4.114607000	12.955791000	16.822406000
1	-5.430651000	12.794033000	17.804621000
6	-4.693435000	10.971810000	17.096231000
1	-5 176633000	10 425843000	17 806197000
1	-5 246335000	10 9/8803000	16 2/2519000
L C	4 960152000	7 220850000	16 547174000
0	4.660155000	7.230830000	16.34/1/4000
1	5.6//953000	/./95/68000	16.3256/8000
1	4.628797000	6.668561000	15.731385000
6	0.305116000	4.878770000	19.821339000
1	0.305125000	4.419396000	20.730158000
1	0.291532000	4.144940000	19.115710000
6	2.237792000	4.348261000	16.745162000
1	2.170093000	3,746074000	15.927869000
1	1 693438000	3 927957000	17 494494000
6	3 28/529000	10 069906000	21 /01019000
1	2.715666000	10.000000000	21.156720000
1	2.713666000	10.869912000	21.136720000
1	4.26021/000	10.338948000	21.411098000
1	3.019065000	9.734925000	22.319371000
6	-3.699795000	11.064968000	20.833324000
1	-4.322767000	10.748133000	21.575054000
1	-2.867557000	11.458690000	21.268461000
6	3.263418000	8.934680000	15.740072000
1	2.502835000	8.456454000	15.261426000
1	4.034203000	9.035366000	15.082569000
6	-3 443271000	8 954033000	16 446305000
1	-4 248695000	8 840334000	15 832595000
1	-2 604090000	9 201622000	17 270225000
1 C	-3.004089000	8.391032000	17.107005000
0	3.68//86000	4.463139000	17.10/985000
1	3.9/6835000	3.58/053000	17.598616000
1	4.261861000	4.606296000	16.341165000
6	-0.370080000	12.403966000	16.285050000
1	-0.867789000	11.720121000	15.720511000
1	-0.387970000	13.293959000	15.791588000
6	3.083682000	9.025944000	20.432214000
6	5.161960000	6.330989000	17.731640000
1	5.901605000	5.675113000	17.484887000
1	5.483832000	6.893520000	18.516351000
-	-1 905058000	13 799159000	17 696619000
1	-2 421022000	12 01220000	16 022640000
1	-2.431932000	14 (120(2000	17 012112000
	-1.303908000	14.613063000	17.813112000
6	-2.850018000	13.688211000	18.86/932000
1	-3.488777000	14.482517000	18.876713000
1	-2.323886000	13.692166000	19.739306000
6	-0.182043000	9.191771000	12.543059000
6	4.332034000	13.450254000	17.842371000
6	4.212363000	14.835040000	17.205943000
1	4.374546000	14.766656000	16.209384000
1	4.898304000	15.454511000	17.618855000
-	3 285318000	15 207327000	17 370570000
-	_1 558104000	1 760342000	18 5051/0000
6	1 215622000		12 20060000
U 1	1 050022000	0.90420/000	12.2090UUUUU
1	1.05293/000	9.342242000	13.059036000
\bot	1.585365000	9.429711000	LI.433086000

1	1.501845000	7.974373000	12.205859000
6	-0.443133000	10.727579000	12.547795000
1	-1.438484000	10.903362000	12.501373000
1	0.009936000	11.144845000	11.746144000
1	-0.066912000	11.132630000	13.394980000
6	-0.984048000	8.547792000	11.385741000
1	-0.708122000	7.578911000	11.280790000
1	-0.792695000	9.046207000	10.526377000
1	-1.973710000	8.594903000	11.590854000
6	3.992344000	13.569263000	19.323151000
1	3.018633000	13.825285000	19.431171000
1	4.574657000	14.280888000	19.747142000
1	4.158038000	12.684022000	19.783286000
6	-5.725852000	4.731501000	19.573900000
1	-5.380401000	4.334678000	20.438744000
1	-6.483748000	4.162714000	19.221347000
1	-6.061365000	5.670074000	19.746369000
6	-5.143185000	5.606253000	17.320500000
1	-5.492298000	6.489193000	17.671261000
1	-5.901238000	5.093268000	16.889234000
1	-4.419819000	5.778828000	16.634850000
6	5.784249000	12.984937000	17.686724000
1	5.892649000	12.063108000	18.090128000
1	6.396637000	13.634137000	18.164232000
1	6.027754000	12.952865000	16.704759000
6	-4.247064000	3.355059000	18.192542000
1	-3.546209000	3.310148000	17.462369000
1	-5.085657000	2.883863000	17.879097000
1	-3.895639000	2.891936000	19.020294000

Literature

1 F. Möller, K. Merz, C. Herrmann and U.-P. Apfel, *Dalton Trans*, 2016, **45**, 904–907. 2 A. Gennaro, A. A. Isse and E. Vianello, *J. Electroanal. Chem.*, 1990, **289**, 203–215. 3 A. L. Spek, *Acta Crystallogr. Sect. C*, 2015, **71**, 9–18.