Electronic Supplementary Information

Structure and bonding of [Pd2Sn18]4-: an interesting example of the mutual delocalisation phenomenon

Fu Kit Sheong,^{as} Wen-Jie Chen,^{abs} Jing-Xuan Zhang,^a Yang Li^a and Zhenyang Lin*^a

a. Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China. E-mail: chzlin@ust.hk

b. Department of Material Chemistry, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, People's Republic of China.

[§] F.K.S. and W.-J.C. contributes equally to the work.

Figure S1. Frontier orbitals of $[Sn_{10}]^0$, note that the LUMOs are degenerated, meaning that a singlet $[Sn_{10}]^{2-}$ as predicted by the Wade-Mingos rule is unlikely.

Figure S2. Frontier orbitals of unoptimised *iso-nido*- $[Pd@Sn_9]^2$ fragment based on the optimised geometry of $[Pd_2@Sn_{18}]^4$ same as Fig. 1, with top view included to better illustrate the orbital symmetries.

Figure S3. Fragment analysis of $[Pd_2Sn_{18}]^{4-}$. Prominent orbital contributions (> 10%) to and molecular orbitals (HOMO-10/HOMO-10' pair to LUMO/LUMO' pair) by fragment orbitals (HOMO-3/HOMO-3' pair to LUMO/LUMO' pair) are shown.

Cartesian coordinates of Optimised structures

[Sn10]0 Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn	0.000000 -1.501781 1.501781 -2.427198 0.000000 2.427198 0.000000 -2.419837 2.419837 0.00000 1.501781 -1.501781 2.427198 -2.427198 0.00000 0.000000 2.419837 -2.419837	1.734107 -0.867053 -0.867053 1.401344 -2.802687 1.401344 2.794187 -1.397094 -1.397094 -1.734107 0.867053 0.867053 -1.401344 -1.401344 2.802687 -2.794187 1.397094 1.397094	4.020753 4.020753 4.020753 2.210079 2.210079 2.210079 0.897596 0.897596 0.897596 -4.020753 -4.020753 -4.020753 -2.210079 -2.210079 -2.210079 -0.897596 -0.897596	
[Pd ₂ Sn ₁₈] ⁴⁻ Pd Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn Sn	(fragment 0.00000 0.00000 -1.517290 -2.456699 0.000000 2.456699 0.000000 -2.411772 2.411772 0.000000 1.517290 -1.517290 2.456699 -2.456699 0.000000 0.000000 2.411772 -2.411772	1: atom 1-10; 0.000000 1.752016 -0.876008 -0.876008 1.418376 -2.836751 1.418376 2.784875 -1.392437 -1.392437 0.000000 -1.752016 0.876008 0.876008 -1.418376 -1.418376 -1.418376 2.836751 -2.784875 1.392437 1.392437	fragment 2: 1.806908 4.080608 4.080608 2.224405 2.224405 2.224405 2.224405 0.904716 0.904716 0.904716 -1.806908 -4.080608 -4.080608 -2.224405 -2.224405 -2.224405 -0.904716 -0.904716	atom 11-20)
[Ni ₃ Ge ₁₈] ⁴⁻ Ni Ge Ge Ge Ge Ge Ge Ge Ge Ge Ge Ge Ge Ge	0.000000 0.00000 -1.333245 1.333245 -2.129875 0.000000 2.129875 0.000000 -1.822416 1.822416 0.000000 1.333245 -1.333245 2.129875 0.000000 -2.129875 0.000000 1.822416 -1.822416 0.000000	0.000000 1.539498 -0.769749 -0.769749 1.229684 -2.459367 1.229684 2.104344 -1.052172 -1.052172 0.000000 -1.539498 0.769749 0.769749 -1.229684 2.459367 -1.229684 2.459367 -1.229684 -2.104344 1.052172 0.000000	2.478720 4.469541 4.469541 2.770728 2.770728 2.770728 2.770728 2.770728 1.454777 1.454777 1.454777 -2.478720 -4.469541 -4.469541 -2.770728 -2.770728 -2.770728 -2.770728 -1.454777 -1.454777 -1.454777 0.000000	

[Ge ₁₈ (SiH ₃) ₆] ⁰ (fragmer	nt 1: atom 1	to 21; fragment	2:	atom	22	to	42)
Ge	1.454191	-4.234767	0.000000					
Ge	-0.809336	-4.282247	1.289510					
Ge	-0.809336	-4.282247	-1.289510					
Ge	0.972707	-2.389495	1.822897					
Ge	0.972707	-2.389495	-1.822897					
Ge	-2.111295	-2.370291	0.000000					
Ge	-1.365949	-1.479558	-2.303210					
Ge	2.500347	-1.401750	0.000000					
Ge	-1.365949	-1.479558	2.303210					
Si	2.184645	-3.073303	3.770148					
Н	2.607336	-1.881575	4.557703					
Н	3.403904	-3.835414	3.386354					
Н	1.334164	-3.930486	4.639925					
Si	2.184645	-3.073303	-3.770148					
Н	2.607336	-1.881575	-4.557703					
Н	1.334164	-3.930486	-4.639925					
Н	3.403904	-3.835414	-3.386354					
Si	-4.414944	-3.028730	0.000000					
Н	-5.292953	-1.824928	0.000000					
Н	-4.732997	-3.835086	1.209934					
Н	-4.732997	-3.835086	-1.209934					
Ge	1.274186	0.842082	0.000000					
Ge	-0.920579	0.883518	1.293618					
Ge	-0.920579	0.883518	-1.293618					
Ge	0.938485	2.611042	2.162917					
Ge	-1.376523	3.331271	1.235001					
Ge	-1.376523	3.331271	-1.235001					
Ge	0.938485	2.611042	-2.162917					
Ge	2.233351	3.145415	0.000000					
Ge	0.412278	4.831384	0.000000					
Si	-2.865534	4.593254	2.588910					
Н	-2.846201	6.004204	2.126735					
Н	-2.418757	4.510389	4.001461					
Н	-4.235781	4.038336	2.457501					
Si	-2.865534	4.593254	-2.588910					
Н	-2.846201	6.004204	-2.126735					
Н	-4.235781	4.038336	-2.457501					
Н	-2.418757	4.510389	-4.001461					
Si	4.589583	3.423382	0.00000					
Н	5.227074	2.084167	0.000000					
Н	4.980563	4.179987	1.215329					
Н	4,980563	4.179987	-1.215329					