SI: Uranium rhodium bonding in heterometallic complexes

Johann A. Hlina,^{*a,b*} Jordann A. L. Wells,^{*a*} James R. Pankhurst,^{*a*} Jason B. Love,^{*a*} and Polly L. Arnold*,^{*a*}

^aEaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, Edinburgh EH9 3FJ, U.K.

^bCurrent address: Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria

Table of contents

1.	Molecular structure of 4 and crystallographic data	2
	Figure S1. Molecular structure of 4	2
	Table S1. Crystallographic data.	3
2.	Electrochemistry	4
	Figure S2. Cyclic voltammogram of 2 .	4
	Figure S3. Cyclic voltammogram of 2 focussing on the irreversible red. feature only	5
	Figure S4. Square-wave voltammogram of 2	6
	Figure S5. Cyclic voltammogram of 3	7
	Figure S6. Cyclic voltammogram of 3 focussing on the quasi-reversible ox. feature only	8
	Figure S7. Cyclic voltammogram of 3 focussing on the irreversible red. feature only	9
	Figure S8. Cyclic voltammogram of 3 with limited scanning range	10
	Figure S9. Linear-sweep voltammogram of 3	11
	Figure S10. Square-wave voltammogram of 3	12
	Figure S11. Cyclic voltammogram of 4	13
3.	UV-vis NIR spectra	14
	Figure S12: UV-vis spectra of 2 - 4 in the range 225 - 800 nm	14
	Figure S13: NIR spectra of 2 - 4 over the wavelength range 800 - 2100 nm	14
4.	NMR spectra of 2	15
	Figure S14: ¹ H NMR spectrum of 2 in CD ₂ Cl ₂ at 300K.	15
	Figure S15: ³¹ P NMR spectrum of 2 in CD ₂ Cl ₂ at 300K	15
	Figure S16: Stacked ¹ H spectra of 2 in CD ₂ Cl ₂ at 300K at different time intervals	16

1. Molecular structure of 4 and crystallographic data

Figure S1. Molecular structure of **4**. Thermal ellipsoids drawn at 50 % probability and hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°): Rh1-P1: 2.2676(5), Rh1-O1: 2.037(1), Rh1-C24: 2.216(2), Rh1-C27: 2.105(2), Rh1-C28: 2.113(2), Rh1-C31: 2.198(2), P1-Rh1-O1: 83.36(4).

Table S1. Crystallographic data.

	2	3	4
CCDC number	1519920	1519921	1519919
Empirical formula	$C_{69}H_{72}I_2O_3P_3RhU$	$C_{92}H_{96}I_6O_4P_4Rh_2U_2$	C ₃₁ H ₃₆ OPRh
Formula weight	1636.91	2832.84	558.48
Temperature/K	170	170	170(2)
Crystal system	triclinic	monoclinic	Triclinic
Space group	P-1	P2 ₁ /n	P-1
a/Å	12.3192(3)	17.06093(18)	9.7178(2)
b/Å	13.5642(3)	15.91912(19)	11.5025(2)
c/Å	26.1759(5)	19.8049(2)	12.6599(3)
α/°	98.8295(17)	90	102.7983(18)
β/°	97.8140(17)	97.6036(10)	102.8779(19)
γ/°	97.5610(17)	90	93.4883(18)
Volume/Å ³	4229.80(15)	5331.62(10)	1336.16(5)
Ζ	2	2	2
$\rho_{calc}g/cm^3$	1.285	1.765	1.388
μ/mm ⁻¹	2.928	5.171	0.720
F(000)	1596.0	2664.0	580.0
Crystal size/mm ³	0.1842 × 0.1568 × 0.0464	0.5370 × 0.1936 × 0.1419	$\begin{array}{c} 0.2734 \times 0.2443 \times \\ 0.1046 \end{array}$
20 range for data collection/°	6.062 to 54.968	5.656 to 54.966	6.122 to 54.97
Index ranges	$\begin{array}{c} -15 \leq h \leq 15, -17 \leq k \leq \\ 17, -33 \leq l \leq 33 \end{array}$	$\begin{array}{c} -22 \leq h \leq 22, \ -20 \leq k \leq \\ 20, \ -25 \leq l \leq 25 \end{array}$	$\begin{array}{c} -12 \leq h \leq 12, -14 \leq k \leq \\ 14, -16 \leq l \leq 16 \end{array}$
Reflections collected	97387	97286	30827
Independent reflections	$19379 [R_{int} = 0.0881, R_{sigma} = 0.0803]$	12211 [$R_{int} = 0.0359$, $R_{sigma} = 0.0210$]	$\begin{array}{c} 6119 \; [R_{int} = 0.0280, \\ R_{sigma} = 0.0225] \end{array}$
Data/restraints/parameters	19379/0/724	12211/0/504	6119/18/349
Goodness-of-fit on F ²	1.013	1.046	1.022
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0442, wR_2 = 0.0859$	$R_1 = 0.0227, wR_2 = 0.0501$	$R_1 = 0.0246, WR_2 = 0.0615$
Final R indexes [all data]	$R_1 = 0.0715, wR_2 = 0.0929$	$R_1 = 0.0296, WR_2 = 0.0528$	$R_1 = 0.0279, wR_2 = 0.0630$
Largest diff. peak/hole / e Å ⁻³	1.46/-1.02	0.93/-0.87	0.36/-0.31

2. Electrochemistry

Figure S2. Cyclic voltammogram of **2**, measured at 100 mV s⁻¹, showing the full electrochemical window provided by $CH_2Cl_2 / [^nBu_4][BPh_4]$.

Figure S3. Cyclic voltammogram of **2**, measured at 100 mV s⁻¹, focussing on the irreversible reduction feature only.

Figure S4. Square-wave voltammogram of **2**, showing only the cathodic scan. Frequency = 25 Hz; step potential = 5 mV; amplitude = 20 mV; scan rate = 124 mV s^{-1} .

Figure S5. Cyclic voltammogram of **3**, focussing on the quasi-reversible oxidation feature only. Scan-rate dependence is observed for the peak potentials of both the oxidation and reduction waves.

It should be noted that DCM decomposes both bimetallic complexes **2** and **3**, but only after around 20 minutes. The voltammogram shown in Fig. 3 was recorded within 2 minutes of dissolution of **3** in the electrolyte. The data are reproducible and are considered sufficiently reliable for interpretation. We suggest the decomposition probably involves an oxidative addition of a CI-C bond to Rh, which could be facilitated by initial U-coordination of DCM, generating a charged Rh(III) complex that can abstracts OAr^P from the U centre. Further work is in progress to test this theory.

Figure S6. Cyclic voltammogram of **3**, measured at 100 mV s⁻¹, focussing on the quasi-reversible oxidation feature only.

Figure S7. Cyclic voltammogram of **3**, measured at 100 mV s⁻¹, focussing on the irreversible reduction feature only.

Figure S8. Cyclic voltammogram of **3**, measured at 100 mV s⁻¹, showing that the small oxidation feature that is observed at *ca*. -1.6 V in the full scan is not observed when scanning to only -1.9 V (shown here). The small feature in the full scan is therefore assigned to a decomposition product that is formed after scanning past -2.49 V.

Figure S9. Linear-sweep voltammogram of **3**, measured at 5 mV s⁻¹ as a stirred solution. The mass-transport limiting current for the oxidation process is *ca*. +10 μ A, whereas that for the reduction process is ca. -20 μ A. The number of electrons involved in the reduction is therefore twice that involved in the oxidation.

Figure S10. Square-wave voltammogram of **3**, showing forward and return scans measured for the full electrochemical window. Frequency = 25 Hz; step potential = 5 mV; amplitude = 20 mV; scan rate = 124 mV s^{-1} .

Figure S11. Cyclic voltammogram of **4**, measured at 100 mV s⁻¹. The background scan (measured before the compound was added to the solution) is overlaid in black to highlight the absence of any redox features in the electrochemical window.

3. UV-vis NIR spectra

Figure S12: UV-vis spectra of 2 - 4 in the range 225 - 800 nm. Collected from 0.1 mM (2), 0.02 mM (3) and 0.1 mM (4) pyridine solutions respectively.

Figure S13: NIR spectra of 2 - 4 over the wavelength range 800 - 2100 nm. Spectra recorded from 1.0 mM (2), 0.4 mM (3) and 0.7 mM (4) solutions respectively. The asterisk marks solvent overtones.

4. NMR spectra of 2

Figure S14: ¹H NMR spectrum of **2** in CD₂Cl₂ at 300K. Resonances corresponding to residual *proteo*-solvent and impurities are scored through.

Figure S15: ³¹P NMR spectrum of **2** in CD₂Cl₂ at 300K.

Figure S16: Stacked ¹H spectra of **2** in CD_2Cl_2 at 300K at different time intervals. The orange spectrum is t = 0 hours and the red spectrum is t = 72 hours.