Electronic Supplementary Information (ESI) for the manuscript:

Cytotoxic gold(III) complexes incorporating 2,2':6',2"-terpyridine ligand framework – the impact of the substituent in 4'-position of terpy ring

K. Czerwińska^a, M. Golec^{b,c}, M. Skonieczna^{d,e}, J. Palion-Gazda^a, D. Zygadło ^{b,c}, A. Szlapa-Kula^f, S. Krompiec^f, B. Machura^a and A Szurko^{b,c}

a. Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St, 40-006 Katowice, Poland

b. August Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland. *c.* Silesia Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów,

Poland, *mail: agnieszka.szurko@us.edu.pl

d. Silesian University of Technology, Center Biotechnology Bioengineering and Bioinformatics, Gliwice, Poland

e. Silesian University of Technology, Institute of Automatic Control, Gliwice, Poland

f. Department of Inorganic, Organometallic Chemistry and Catalysis, Institute of Chemistry, University of Silesia, 9thSzkolna St., 40-006 Katowice, Poland

Table of Contents

1. XRPD pattern of 1	Figure S1
2. XRPD pattern of 2	Figure S2
3. IR spectrum of 1	Figure S3
4. IR spectrum of 2	Figure S4
5. IR spectrum of [AuCl(terpy)](PF ₆) ₂	Figure S5
6. UV-vis spectra of the free ligands in DMSO over 24 h.	Figure S6
7. UV-Vis spectra of [AuCl(terpy)](PF ₆) ₂ in DMSO and 10 mM PBS over 24h.	Figure S7
8. The selected structural data for Au(III) coordination compounds incorporating 2,2':6',2"-terpyridine derivatives.	Table S1
9. X—Y•••Cg(J)(π -ring) interactions for 1 , 2 and [AuCl(terpy)](PF ₆) ₂ .	Table S2
10. Short $\pi \cdots \pi$ interactions for 1	Table S3
11. Short intra- and intermolecular hydrogen bonds detected in structures1, 2 and [AuCl(terpy)](PF₆)₂	Table S4
12. Crystal data and structure refinement for $[AuCl(terpy)](PF_6)_2$	Table S5
13. The bond lengths [Å] and angles [°] for $[AuCl(terpy)](PF_6)_2$	Table S6
14. Molecular structure of $[AuCl(terpy)](PF_6)_2$.	Figure S8
15. View of the supramolecular packing of $[AuCl(terpy)](PF_6)_2$	Figure S9
16. Cells viability after compounds 1 and 2 treatment	Figure S10
17. Cells viability after ligands 4'-R ¹ -terpy and 4'-R ² -terpy treatment	Figure S11
18. Cells viability after [AuCl(terpy)](PF ₆) ₂ and cisplatin treatment	Figure S12
19. ¹ H and ³¹ P NMR spectra of compound 1	Figure S13
20. ¹ H and ³¹ P NMR spectra of compound 2	Figure S14
21. ¹ H and ³¹ P NMR spectra of compound [AuCl(terpy)](PF ₆) ₂	Figure S15

Figure S1. XRPD pattern of 1 (experimental - black) and the simulation of its powder pattern from the crystal structure (red).

Figure S2. XRPD pattern of 2 (experimental - black) and the simulation of its powder pattern from the crystal structure (red).

Figure S3. IR spectrum of 1.

Figure S4. IR spectrum of 2.

Figure S5. IR spectrum of [AuCl(terpy)](PF₆)₂.

Figure S7. UV-Vis spectra of [AuCl(terpy)](PF₆)₂ in DMSO and 10 mM phosphate-buffered saline (PBS) over 24h.

Compound ^a	Au-N _c (Å)	Au-N _d (Å)	Au-Cl (Å)	Au-F (Å)	N _c ^b -Au-N _d ^c [°]	N _d -Au-N _d [°]	C–N _d –C [°]	C–N _c –C [°]	Ref.
1	1.938(8)	2.020(8) 2.027(8)	2.257(3)	3.075(14) 3.061(17) ^d	81.6(3) 81.3(3)	162.9(3)	120.0(9) 121.3(9)	124.2(8)	
2	1.971(7)	2.047(8) 2.017(8)	2.257(3)	3.11(1) 2.885(6)	79.8(3) 82.1(3)	161.8(3)	121.6(9) 121.4(9)	125.9(8)	_
[AuCl(terpy)](PF ₆) ₂	1.935(9)	2.014(9) 2.032(9)	2.253(3)	3.03(3) 3.16(2)	81.0(4) 81.9(4)	162.7(4)	122.3(10) 120.9(10)	124.2(10)	
$[AuCl(terpy)]Cl_2 \cdot 3H_2O$	1.931(7)	2.029(6) 2.018(6)	2.269(2)	—	81.4 (3) 81.4 (3)	162.7(3)	121.5(7) 121.1(7)	123.4(7)	1
[AuCl(terpy)] ₂ [AuCl ₂] ₃ [AuCl ₄]	1.941(8)	2.022(9) 2.030(8)	2.271(3)	_	81.3(4) 81.4(4)	162.6(4)	120.1 (9) 121.0(9)	124.5(9)	
[Au(4-MeOPh-terpy)Cl](ClO ₄) ₂	1.924(6)	2.020(7) 2.047(7)	2.2559(24)	_	80.1(3) 82.5(3)	162.6(3)	120.3(7) 122.2(7)	123.1(7)	2
[AuCl(S-8)] (SO ₃ CF ₃) ₂	1.945(7)	2.025(8) 2.018(8)	2.259(3)	_	81.4(3) 81.2(3)	162.5(3)	119.6(8) 120.6(9)	124.4(8)	3
[Au(terpy)(OH)](ClO ₄) ₂	1.949(4)	2.009(5) 2.008(4)	_	_	81.2(2) 81.5(2)	162.6(2)	121.4(5) 120.7(5)	125.4(4)	4
[AuCl(terpy)]Cl ₂ ·3H ₂ O	1.950 (3)	2.021 (4) 2.025 (4)	2.2686 (11)	_	81.39 (15) 81.25 (15)	162.64 (15)	121.1 (4) 120.7 (4)	125.6 (4)	5
[AuCl(terpy)](BF ₄) ₂	1.947(3)	2.014(3) 2.028(3)	2.2574(10)	2.915(3) 3.130(2)	80.88(16) 81.53(16)	162.94(12)	120.0(5) 121.3(6)	125.2(3)	6
[AuCl(terpy)](SO ₃ CF ₃) ₂	1.954(4)	2.014(4) 2.026(4)	2.2711(12)	_	81.69(13) 81.36(13)	162.37(17)	119.5(4) 120.7(4)	124.3(4)	0
[Au(4-DMAP)(terpy)](SO ₃ CF ₃) ₂	1.934(5)	2.015(5) 2.013(4)	_	_	81.38(19) 81.53(19)	162.9(2)	120.1(5) 121.5(5)	124.3(5)	7
[Au(terpy)(OH)](SO ₃ CF ₃) ₂	1.963(4)	2.020(5) 2.015(5)	-	_	81.2(2) 82.0(2)	163.2(2)	120.9(5) 120.9(5)	126.3(5)	
[Au(terpy)(NHpyCl)](ClO ₄) ₂	1.960(5)	2.031(5) 2.032(5)	_	_	80.9(2) 80.85(19)	161.7(2)	120.0(5) 121.3(6)	123.4(5)	
[Au(terpy)(NHpymCl)](ClO ₄) ₂	1.947(11)	2.001(10) 2.014(11)	_	—	81.4(5) 81.5(5)	162.5(5)	119.3(10) 122.0(12)	124.2(12)	8
[Au(terpy)(NHpym)](ClO ₄) ₂	1.940(10)	2.023(10) 2.053(11)	_	-	80.8(4) 80.4(4)	161.1(4)	119.3(10) 123.4(10)	123.4(10)	
$[Au(C_6F_5)(\eta 3\text{-terpy})](PF_6)_2$	1.985(3)	2.028(3) 2.025(3)	_	3.148(2) 3.040(3)	80.88(11) 80.60(11)	161.45(11)	120.2(3) 120.2(3)	124.9(3)	9

Table S1. The selected structural data for Au(III) coordination compounds incorporating 2,2':6',2"-terpyridine derivatives.

^a Abbreviation for the ligands: terpy – 2,2':6',2"-terpyridine, S-8 – 4'-(methylthio)-2,2':6',2"-terpyridinyl, 4-MeOPh-terpy –4'-(4-methoxyphenyl)-2,2',6',2"-terpyridine, 4-DMAP- 4-dimethylamoniopyridine, NH₂pyCl – 2-amino-5-chloropyridine, NH₂pymCl – 2-amino-4-chloro-pyrimidine, NH₂pym – 2-aminopyrimidine.

^b N_c – central nitrogen atom of terpyridine ligand

^c N_d – distal nitrogen atoms of terpyridine ligand ^d Symmetry code: (d) = -1/2+x,1/2-y,-1/2+z

Y-X(I)•••Cg(J)	X(I)•••Cg(J) [Å]	X-Perp [Å]	γ [°]	$Y-X(I)\cdots Cg(J)[^{\circ}]$		
1						
$P(1)$ - $F(2)$ •••Cg $(1)^a$	3.06(3)	-3.010	9.73	118.2(11)		
P(1)-F(4)-Cg(2)	3.36(4)	2.970	27.64	118.0(16)		
P(1)-F(6)-Cg(2)	3.19(2)	3.150	8.66	125.1(10)		
		2				
$Au(1)-Cl(1)\cdots Cg(3)^{b}$	3.819(5)	-3.449	25.45	104.74(11)		
P(1)- $F(5)$ •••Cg(4)	3.175(11)	-2.771	29.20	150.7(6)		
P(2)-F(10)•••Cg(4)	2.936(7)	2.867	12.49	138.6(3)		
P(2)- $F(12)$ ••• $Cg(3)$ °	3.118(7)	3.114	3.07	121.0(3)		
$[AuCl(terpy)](PF_6)_2$						
P(1)-F(2)-Cg(4)	3.038(6)	2.784	23.60	152.9(7)		
P(1)- $F(5)$ -··Cg(2)	3.012(9)	-2.919	14.31	132.5(9)		
P(2)-F(9)-Cg(4)	2.981(9)	-2.956	7.55	132.5(4)		

Table S2. X—Y•••Cg(J)(π -ring) interactions for 1, 2 and [AuCl(terpy)](PF₆)₂.

 γ = angle X(I) \rightarrow Cg(J) vector and normal to plane J.

Cg1 is the centroid of atoms N(1)/C(1)/C(2)/C(3)/C(4)/C(5); Cg2 is the centroid of atoms N(3)/C(11)/C(12)/C(13)/C(14)/C(15); Cg3 is the centroid of atoms N(4)/C(19)/C(18)/C(17)/C(16)/C(20); Cg4 is the centroid of atoms N(2)/C(6)/C(7)/C(8)/C(9)/C(10);

Symmetry codes: (a) = 1/2+x, 1/2-y, 1/2+z; (b) = 1/2-x, 1/2+y, z; (c) = -x, 1-y, 1-z.

Table S3. Short $\pi \cdots \pi$ interactions for **1**.

$Cg(I) \bullet \bullet \bullet Cg(J)$	$Cg(I) \bullet \bullet Cg(J) [Å]$	α[°]	β[°]	γ [°]	Cg(I)-Perp [Å]	Cg(J)-Perp [Å]
			1			
$Cg(2) \bullet \bullet Cg(5)^a$	3.736(5)	9.0(4)	22.26	17.92	3.555(4)	-3.457(4)

 α = dihedral angle between Cg(I) and Cg(J); Cg(I)-Perp = Perpendicular distance of Cg(I) on ring J; Cg(J)-Perp = perpendicular distance of Cg(J) on ring I; β = angle $Cg(I) \rightarrow Cg(J)$ vector and normal to ring I; γ = angle $Cg(I) \rightarrow Cg(J)$ vector and normal to plane J;

Cg2 is the centroid of atoms N(3)/C(11)/C(12)/C(13)/C(14)/C(15); Cg5 is the centroid of atoms N(4)/C(16)/C(17)/C(18)/C(19)/C(20);

Symmetry codes: (a) = -1+x, y, z.

D–H•••A	D–H [Å]	H•••A [Å]	D–A [Å]	D–H•••A[°]	
1					
$C(1)-H(1)\cdots Cl(1)$	0.93	2.82	3.380(12)	119.4	
$C(2)-H(2) \bullet \bullet F(11)^{a}$	0.93	2.39	3.204(15)	146.3	
$C(3)-H(3)+F(7)^{b}$	0.93	2.53	3.23(2)	132.0	
$C(7)-H(7)\cdots N(4)$	0.93	2.36	2.711(14)	101.7	
C(15)-H(15)-Cl(1)	0.93	2.79	3.356(11)	120.4	
$C(19)-H(19)\cdots F(8)$ °	0.93	2.55	3.222(18)	129.8	
$C(19)-H(19)\cdots F(9)^{\circ}$	0.93	2.43	3.348(17)	170.1	
	1	2	1		
$C(2)-H(2)\cdots F(8)^{d}$	0.93	2.50	3.270(13)	140.00	
C(2)–H(2)•••F(3) °	0.93	2.54	3.069(14)	116.20	
C(4)–H(4)•••F(7) ^f	0.93	2.45	3.316(13)	155.50	
$C(4)-H(4) \bullet \bullet F(9)^{f}$	0.93	2.54	3.299(13)	139.30	
$C(7)-H(7) \bullet \bullet F(7)^{f}$	0.93	2.51	3.405(12)	161.40	
C(9)–H(9)•••F(3) ^g	0.93	2.44	3.278(12)	149.50	
$C(12)-H(12) \bullet \bullet F(3)^{g}$	0.93	2.50	3.280(13)	141.80	
$C(13)-H(13) \bullet \bullet F(2)^{h}$	0.93	2.49	3.395(14)	163.40	
$C(14)-H(14)\cdots F(4)^{h}$	0.93	2.49	3.139(14)	127.30	
C(15)–H(15)•••Cl(1)	0.93	2.79	3.352(11)	120.20	
$C(15)-H(15)\cdots F(5)^{i}$	0.93	2.55	3.264(14)	134.00	
$C(18)-H(18)\cdots F(11)^{j}$	0.93	2.51	3.254(13)	137.10	
C(19)–H(19)•••F8) ^j	0.93	2.49	3.357(13)	154.30	
$C(20)-H(20) \bullet \bullet F(2)^{g}$	0.93	2.45	3.248(13)	143.60	
[AuCl(terpy)](PF ₆) ₂					
$C(1)-H(1)\cdots Cl(1)$	0.93	2.75	3.331(13)	121.4	
C(9)-H(9)••• $F(8)$ k	0.93	2.47	3.310(13)	151.0	
$C(14)-H(14)\bullet\bullet\bullet F(4)^{d}$	0.93	2.49	3.251(11)	140.0	
C(15)–H(15)•••Cl(1)	0.93	2.83	3.382(14)	119.2	

Table S4. Short intra- and intermolecular hydrogen bonds detected in structures 1, 2 and [AuCl(terpy)](PF₆)₂.

Symmetry codes: (a) = -1/2+x, 1/2-y, 1/2+z; (b) = 1/2+x, 1/2-y, 1/2+z; (c) = 1+x, y, z; (d) = 1-x, 1-y, 1-z; (e) = 1/2+x, y, 1/2-z; (f) = 1/2-x, -1/2+y, z; (g) = -1/2+x, y, 1/2-z; (h) = -x, 1/2+y, 1/2-z; (i) = 1/2-x, 1/2+y, z; (j) = -1/2+x, 1/2-y; (k) = -1+x, y, z;

[AuCl(terpy)](PF ₆) ₂				
Empirical formula	$C_{15}H_{11}AuClF_{12}N_3P_2$			
Formula weight	755.62			
Temperature [K]	295.0(2)			
Wavelength [Å]	0.71073			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions [Å,°]	a =7.6686(5)			
	b = 8.4908(6)			
	c = 17.6734(10)			
	$\alpha = 92.649(5)$			
	$\beta = 95.322(5)$			
	$\gamma = 112.313(7)$			
Volume [Å ³]	1055.86(13)			
Z	2			
Density (calculated) [Mg/m ³]	2.377			
Absorption coefficient [mm ⁻¹]	7.360			
F(000)	712			
Crystal size [mm]	0.16×0.042×0.025			
θ range for data collection [°]	3.309 to 25.048			
Index ranges	-6≤ h ≤9			
	-10≤ k ≤10			
	-21≤1≤20			
Reflections collected	9141			
Independent reflections	$3717 (R_{int} = 0.0600)$			
Completeness to 2theta	99.7%			
Min. and max. transm.	0.60729 and 1.000			
Data / restraints / parameters	3717 / 0 / 307			
Goodness-of-fit on F ²	1.018			
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0602			
	wR2 = 0.1340			
R indices (all data)	R1 = 0.0807			
	wR2 = 0.1432			
Largest diff. peak and hole [e Å ⁻³]	2.21 and -1.76			

Table S5. Crystal data and structure refinement for [AuCl(terpy)](PF₆)₂.

Bond lengths						
Au(1)–N(1)	2.032(9)					
Au(1)–N(2)	1.935(9)					
Au(1)–N(3)	2.014(9)					
Au(1)–Cl(1)	2.253(3)					
Bond an	Bond angles					
N(1)-Au(1)-N(2)	81.9(4)					
N(2)-Au(1)-N(3)	81.0(4)					
N(1)-Au(1)-N(3)	162.7(4)					
Cl(1)-Au(1)-N(1)	98.1(3)					
Cl(1)-Au(1)-N(2)	178.1(3)					
Cl(1)-Au(1)-N(3)	99.1(3)					
C(1)–N(1)–C(5)	122.3(10)					
C(6)–N(2)–C(10)	124.2(10)					
C(11)–N(3)–C(15)	120.9(10)					

Table S6. The bond lengths [Å] and angles $[\circ]$ for $[AuCl(terpy)](PF_6)_2$

Figure S8. Molecular structure of $[AuCl(terpy)](PF_6)_2$ together with the atom numbering. Displacement ellipsoids are drawn at 50% probability level.

Figure S9. View of the supramolecular packing of $[AuCl(terpy)](PF_6)_2$ arising from weak F••• π type interactions.

Figure S10. Cells viability after compounds 1 and 2 treatment

Figure S11. Cells viability after ligands 4'-R¹-terpy and 4'-R²-terpy treatment

Figure S12. Cells viability after [AuCl(terpy)](PF₆)₂ and cisplatin treatment

Figure S13. (a) ¹H (400 MHz, DMSO-d₆) and (b) ³¹P (162 MHz, DMSO-d₆) NMR spectra of **1.** The assignment has been made on the basis of the literature data for the related complexes $[Au(terpy)C1]^{2+1,4}$, $[AuCl(S-8)](O_3SCF_3)_2$ ² (S-8 = 4'-methylsulfanyl-2,2':6',2''-terpyridine), $[Au(C_6F_5)(\eta^3-terpy)](PF_6)_2$ ⁹ as well as ¹H NMR spectra of the free ligands ^{10, 11} were taken into consideration.

Presence of the low intensity signals in ¹H NMR are due to instability of **1** in DMSO (evidenced by Uv-Vis monitoring)

Figure S14. (a) ¹H (400 MHz, DMSO-d₆) and (b) ³¹P (162 MHz, DMSO-d₆) NMR spectra of **2.** The assignment has been based on the literature data for the related complexes $[Au(terpy)C1]^{2+1,4}$, $[AuCl(S-8)](O_3SCF_3)_2$ ² (S-8 = 4'-methylsulfanyl-2,2':6',2''-terpyridine), $[Au(C_6F_5)(\eta^3-terpy)](PF_6)_2$ ⁹ as well as ¹H NMR spectra of the free ligands ^{10, 11} were taken into consideration.

Presence of the low intensity signals in ¹H NMR are due to instability of **2** in DMSO (evidenced by Uv-Vis monitoring)

(b)

Figure S15. (a) ¹H (a) (400 MHz, DMSO-d₆) and (b) ³¹P (162 MHz, DMSO-d₆) NMR spectra of [AuCl(terpy)](PF₆)₂. The assignment has been made on the basis of the literature data for the related complexes [Au(terpy)C1]^{2+ 1, 4}, [AuCl(**S-8**)](O₃SCF₃)₂ ² (**S-8** = 4'-methylsulfanyl-2,2':6',2''-terpyridine), [Au(C₆F₅)(η³-terpy)](PF₆)₂ ⁹ as well as ¹H NMR spectra of the free ligands ^{10, 11} were taken into consideration. Presence of the low intensity signals in ¹H NMR are due to instability of [AuCl(terpy)](PF₆)₂ in DMSO-d₆ (evidenced by Uv-Vis monitoring)

- 1. L. S. Hollis and S. J. Lippard, J. Am. Chem. Soc., 1983, 105, 4293
- 2. H-Q. Liu and T-C. Cheung, J. Chem. Soc., Chem. Commun., 1995, 1787
- 3. U. S. Sampath and W. C. Putnam, J. Chem. Soc., Dalton Trans., 1999, 2049
- 4. B. Pitteri and G. Marangoni, J. Chem. Soc., Dalton Trans., 1999, 677
- 5. H.B.Friedrich, G.E.M.Maguire, B.S.Martincigh, M.G. McKay and L.K.Pietersen, *Acta Crystallogr., Sect.E:Struct.Rep.Online*, 2008, **64**,m1240
- 6. V. Gomez and M. C. Hartwick, J. Chem. Crystallogr., 2012, 42, 824
- 7. R.Corbo, T. P.Pell, B.D.Stringer, C.F. Hogan, D.J.D.Wilson, P.J.Barnard and J.L.Dutton, *J.Am.Chem.Soc.*, 2014,**136**,12415
- 8. S. Iwashita, Y. Saito, H. Ohtsu and K. Tsuge, J. Chem. Soc., Dalton Trans., 2014,43, 15719
- M. C. Gimeno, J. M. López-de-Luzuriaga, E. Manso, M. Monge, M. E. Olmos, M. Rodríguez-Castillo, M.-T. Tena, D. P. Day, E. J. Lawrenceand G. G. Wildgoose, *Inorg. Chem.*, 2015, 54, 10667
- 10. C. B. Smith, C. L. Raston and A. N. Sobolev, *Green Chem.*, 2005, 7, 650–654
- 11. A. Maroń, A. Szlapa, T. Klemens, S. Kula, B. Machura, S. Krompiec, J. G. Małecki, A. Świtlicka-Olszewska, K. Erfurt and A. Chrobok, *Organic & Biomolecular Chemistry*, 2016, **14**, 3793-3808