Supporting Information for:

Synthesis of new photosensitive $H_2BBQ^{2+}[ZnCl_4]^{2-}/[(ZnCl)_2(\mu-BBH)]$ complexes, through the selective oxidation of H_2O to H_2O_2

M. Stylianou,^{a,b} I. Hadjiadamou,^a C. Drouza,^b S. C. Hayes,^a E. Lariou,^a I. Tantis,^c P. Lianos,^c A. C. Tsipis^d and A. D. Keramidas,^a

a. Anastasios D. Keramidas, Ioanna Hadjiadamou, Marios Stylianou, Sophia C. Hayes, Eirini Lariou Department of Chemistry University of Cyprus Nicosia 1678, Cyprus e.mail:akeramid@ucy.ac.cy e.mail: shayes@ucy.ac.cy b. Chryssoula Drouza Department of Agricultural ProductionBiotechnology and Food Science Cyprus University of Technology Limassol 3036, Cyprus e.mail:chryssoula.drouza@cut.ac.cy c. losif Tantis, Panagiotis Lianos Department of Chemical Engineering University of Patras 26500 Patras, Greece e.mail: lianos@upatras.gr d. Athanassios C. Tsipis Laboratory of Inorganic and General Chemistry University of Ioannina 45110 Ioannina, Greece e.mail:attsipis@uoi.gr

Contents
Figure S1 ¹ H NMR spectra in D_2O and assignments (A) for 4 and (B) for compound 1 at pD=2.5. S3
Figure S2. ¹ H NMR spectra in D_2O at pD=6.0 and assignments of 2. S4
Figure S3. ¹³ C NMR spectra in D_2O and assignments (A) For 4 and (B) for compound 1 at pD=2.5. S5
Figure S4 ORTEP diagrams of the cation of H ₄ BBQ ⁴⁺ Cl ₄ ⁴⁻ (3) with atomic numbering scheme and thermal ellipsoids
at 50% probability level. The hydrogen atoms except the N-H have been omitted for clarity S6
Figure S5 ORTEP diagrams of the cation of $H_6BBH^{4+}Cl_4^{4-}$ (4) with atomic numbering scheme and thermal ellipsoids
at 50% probability level. The hydrogen atoms except the N-H and O-H have been omitted for
clarity S7
Figure S6. Equilibrium geometry of 1 optimized at the BP86/6-31G(d,p)/PCM level of theory in aqueous solution.S8
Figure S7. 3D contour plots of the Molecular Orbitals (MOs) involved in the principal electronic transitions in the
TD-DFT simulated absorption spectrum of 1 . S9
Figure S8. Dominant NTO pairs ("hole" on the left, "particle" on the right) for the principal electronic excitations
in the absorption spectrum of 1 . S10
Figure S9. X-band cw EPR spectrum of a heated solution of BBQ (1.00 mM) and ZnCl ₂ (2.00 mM) in H ₂ O at pH =5.0
at R.T. (black line). The signal is assigned to the diradical of BBQ. The spectrum was simulated
using the following parameters $g=2.00468$, $A_{14N}=1.04$, $A_{14N}=0.45$, $A_{1H}=6.51$ and $A_{1H}=2.64$ MHz
$D=0.00020 E=0.00011 \text{ cm}^{-1} \text{ and } J_{dip}=21 \times 10^{-4} \text{ cm}^{-1} \text{ (red dashed line)}.$ S11
Figure S10. X-band cw EPR spectrum of a solution of BBQ (1.00 mM) and ZnCl ₂ (2.00 mM) in H ₂ O exposed to the
light of a 15 W mercury lamp for four hours at pH =4 at R.T. (black line). The signal is assigned to
the p-semiquinone single radical, 2,5-bis(bis(pyridin-2-ylmethyl)amino)- 1,4-semiquinone (BBS).
The spectrum was simulated using the following parameters $g=2.00510$, $A_{14N}=1.23$, $A_{14N}=0.79$,
A_{1H} =6.77 and A_{1H} =6.69 MHz (red dashed line). S12
Figure S11. A) NaOH was added in an aqueous solution of 10 mM BBQ and 20 mM ZnCl ₂ (pH=2.5) up to pH=5.5.
The mixture was steered under the light of a mercury lamb (15 W) for 3 hours. To the filtrate, an
aqueous solution of NaVO $_3$ (5 mM) was added and the spectrum was recorded. B) Aqueous
solution of 5 mM BBQ and 10 mM $ZnCl_2$ at pH=2.5 illuminated under the light of a mercury lamb
(15 W) for 3 hours. An aqueous solution of $NaVO_3$ (5 mM) was added and the spectrum were
recorded. C) Aqueous mixture of 5 mM and 10 mM $ZnCl_2$ were heated to dissolve (pH=5.0). The
suspension was filtered and an aqueous solution of $NaVO_3$ (5 mM) was added and the spectrum
were recorded. S13
Figure S12. Schematic illustration of the solar batteryS14
Figure S13. IV curves recorded during one discharge-recharge cycle: (1) Initial curve; (2) Curve traced after the first
discharge; (3) Curve traced after first recharge. S15
Table S1 Bond lengths [Å] and angles [°] of 1.S16
Table S2 Bond lengths [Å] and angles [°] of 2.S18
Table S3 Bond lengths [Å] and angles [°] of 3.S22
Table S4 Bond lengths [Å] and angles [°] of 4.S23
Table S5. Principal singlet-singlet excitations, absorption maxima, λ , oscillator strengths, f , of the
principalS25electronic transitions in the simulated absorption spectrum of 1 S24
Table S6. Cartesian Coordinates and energies of 1 calculated at the /6-31G(d,p)/PCM level of theory inS25
aqueous solution

Figure S1. ¹H NMR spectra in D_2O and assignments (A) for 4 and (B) for compound 1 at pD=2.5.

Figure S2. ^1H NMR spectra in D2O at pD=6.0 and assignments of 2.

Figure S3. 13 C NMR spectra in D₂O and assignments (A) for 4 and (B) for compound 1 at pD=2.5.

Figure S4. ORTEP diagrams of the cation of $H_4BBQ^{4+}Cl_4^{4-}$ (**3**) with atomic numbering scheme and thermal ellipsoids at 50% probability level. The hydrogen atoms except the N-H have been omitted for clarity

Figure S5. ORTEP diagrams of the cation of $H_6BBH^{4+}Cl_4^{4-}$ (4) with atomic numbering scheme and thermal ellipsoids at 50% probability level. The hydrogen atoms except the N-H and O-H have been omitted for clarity

Figure S6. Equilibrium geometry of 1 optimized at the BP86/6-31G(d,p)/PCM level of theory in aqueous solution.

Figure S7. 3D contour plots of the Molecular Orbitals (MOs) involved in the principal electronic transitions in the TD-DFT simulated absorption spectrum of **1**.

Figure S8. Dominant NTO pairs ("hole" on the left, "particle" on the right) for the principal electronic excitations in the absorption spectrum of 1.

Figure S9. X-band cw EPR spectrum of a heated solution of BBQ (1.00 mM) and ZnCl_2 (2.00 mM) in H₂O at pH =5.0 at R.T. (black line). The signal is assigned to the diradical of BBQ. The spectrum was simulated using the following parameters g=2.00468, A_{14N} =1.04, A_{14N} =0.45, A_{1H} =6.51 and A_{1H} =2.64 MHz D=0.00020 E=0.00011 cm⁻¹ and J_{dip} =21 x 10⁻⁴ cm⁻¹ (red dashed line).

Figure S10. X-band cw EPR spectrum of a solution of BBQ (1.00 mM) and ZnCl_2 (2.00 mM) in H₂O exposed to the light of a 15 W mercury lamp for four hours at pH =4 at R.T. (black line). The signal is assigned to the p-semiquinone single radical, 2,5-bis(bis(pyridin-2-ylmethyl)amino)-1,4-semiquinone (BBS). The spectrum was simulated using the following parameters g=2.00510, A_{14N} =1.23, A_{14N} =0.79, A_{1H} =6.77 and A_{1H} =6.69 MHz (red dashed line).

Figure S11. A) NaOH was added in an aqueous solution of 10 mM BBQ and 20 mM ZnCl₂ (pH=2.5) up to pH=5.5. The mixture was steered under the light of a mercury lamb (15 W) for 3 hours. To the filtrate, an aqueous solution of NaVO₃ (5 mM) was added and the spectrum was recorded. B) Aqueous solution of 5 mM BBQ and 10 mM ZnCl₂ at pH=2.5 illuminated under the light of a mercury lamb (15 W) for 3 hours. An aqueous solution of NaVO₃ (5 mM) was added and the spectrum were recorded. C) Aqueous mixture of 5 mM and 10 mM ZnCl₂ were heated to dissolve (pH=5.0). The suspension was filtered and an aqueous solution of NaVO₃ (5 mM) was added and the spectrum were recorded. V1=VO₄³⁻, V(OO)=monoperoxovanadate, V(OO)₂=bisperoxovanadate.

Figure S12. Schematic illustration of the solar battery.

Figure S13. IV curves recorded during one discharge-recharge cycle: (1) Initial curve; (2) Curve traced after the first discharge; (3) Curve traced after the first recharge.

 Table S1.
 Bond lengths [Å] and angles [°] of 1.

Zn(1)-Cl(3)	2.2570(6)	N(2A)-C(5A)	1.344(4)	C(7)-C(8)	1.390(4)
Zn(1)-Cl(1)	2.2642(7)	C(10A)-C(11A)	1.497(4)	C(7)-C(6)	1.393(4)
Zn(1)- $Cl(4)$	2.2840(7)	N(1)-C(2)	1.374(3)	C(1)-C(3)	1.444(4)
Zn(1)- $Cl(2)$	2.2981(6)	N(1)-C(4)	1.457(3)	C(1)-C(2)	1.510(3)
O(1)-C(1)	1.231(3)	N(1)-C(10)	1.462(3)	C(9)-C(8)	1.383(4)
N(3)-C(11)	1.342(3)	C(10)-C(11)	1.503(4)	C(1A)-C(2A)	1.513(3)
N(3)-C(15)	1.350(4)	C(11A)-C(12A)	1.395(4)	C(3)-C(2)#2	1.363(3)
N(3)-H(1N)	0.91(5)	C(5A)-C(6A)	1.386(4)	C(13)-C(12)	1.380(4)
O(1A)-C(1A)	1.225(3)	C(5A)-C(4A)	1.510(4)	C(13)-C(14)	1.397(4)
N(2)-C(5)	1.343(3)	C(9A)-C(8A)	1.388(4)	C(5)-C(6)	1.382(4)
N(2)-C(9)	1.350(3)	C(12A)-C(13A)	1.388(4)	C(7A)-C(6A)	1.391(5)
N(1A)-C(2A)	1.372(3)	C(13A)-C(14A)	1.387(4)	C(14)-C(15)	1.370(4)
N(1A)-C(10A)	1.457(3)	C(11)-C(12)	1.393(4)	C(2)-C(3)#2	1.363(3)
N(1A)-C(4A)	1.468(3)	C(4)-C(5)	1.518(3)	C(2A)-C(3A)#1	1.361(4)
N(3A)-C(11A)	1.339(4)	C(15A)-C(14A)	1.376(4)		
N(3A)-C(15A)	1.347(4)	C(8A)-C(7A)	1.378(5)		
N(3A)-H(2N)	0.81(4)	C(3A)-C(2A)#1	1.361(4)		
N(2A)-C(9A)	1.336(4)	C(3A)-C(1A)	1.446(3)		
Cl(3)-Zn(1)-Cl(1	l)	112.09(3)	C(12)-C(1	1)-C(10)	121.5(2)
Cl(3)-Zn(1)-Cl(4	4)	108.27(3)	N(1)-C(4)	-C(5)	112.24(19)
Cl(1)-Zn(1)-Cl(4	4)	107.73(3)	N(3A)-C(15A)-C(14A)	120.2(3)
Cl(3)-Zn(1)-Cl(2)	2)	108.08(2)	C(7A)-C(8	3A)-C(9A)	118.5(3)
Cl(1)- $Zn(1)$ - $Cl(2)$	2)	109.08(2)	C(15A)-C	(14A)-C(13A)	118.6(3)
Cl(4)- $Zn(1)$ - $Cl(2)$	2)	111.62(3)	C(2A)#1-0	C(3A)-C(1A)	122.3(2)
C(11)-N(3)-C(1	5)	122.5(2)	C(8)-C(7)	-C(6)	119.3(2)
C(11)-N(3)-H(12	N)	112(3)	O(1)-C(1)	-C(3)	120.6(2)
C(15)-N(3)-H(12	N)	125(3)	O(1)-C(1)	-C(2)	120.5(2)
C(5)-N(2)-C(9)		118.2(2)	C(3)-C(1)	-C(2)	118.8(2)
C(2A)-N(1A)-C	(10A)	122.8(2)	N(2)-C(9)	-C(8)	123.0(2)
C(2A)-N(1A)-C	(4A)	117.8(2)	O(1A)-C(1A)-C(3A)	121.3(2)
C(10A)-N(1A)-0	C(4A)	117.46(18)	O(1A)-C(1A)-C(2A)	120.4(2)
C(11A)-N(3A)-0	C(15A)	123.1(2)	C(3A)-C(2	IA)-C(2A)	117.9(2)
C(11A)-N(3A)-I	H(2N)	120(3)	N(1A)-C(4	4A)-C(5A)	110.6(2)
C(15A)-N(3A)-I	H(2N)	117(3)	C(2)#2-C(3)-C(1)	122.4(2)
C(9A)-N(2A)-C	(5A)	118.6(2)	C(12)-C(1	3)-C(14)	119.9(3)
N(1A)-C(10A)-C	C(11A)	115.1(2)	N(2)-C(5)	-C(6)	122.6(2)

C(2)-N(1)-C(4)	117.7(2)	N(2)-C(5)-C(4)	116.2(2)
C(2)-N(1)-C(10)	124.3(2)	C(6)-C(5)-C(4)	121.1(2)
C(4)-N(1)-C(10)	117.3(2)	C(8A)-C(7A)-C(6A)	119.4(3)
N(1)-C(10)-C(11)	114.8(2)	C(13)-C(12)-C(11)	119.4(3)
N(3A)-C(11A)-C(12A)	118.6(2)	C(15)-C(14)-C(13)	118.9(3)
N(3A)-C(11A)-C(10A)	119.8(2)	C(9)-C(8)-C(7)	118.2(2)
C(12A)-C(11A)-C(10A)	121.6(2)	C(3)#2-C(2)-N(1)	122.8(2)
N(2A)-C(5A)-C(6A)	122.2(3)	C(3)#2-C(2)-C(1)	118.2(2)
N(2A)-C(5A)-C(4A)	115.7(2)	N(1)-C(2)-C(1)	119.0(2)
C(6A)-C(5A)-C(4A)	122.1(2)	N(3)-C(15)-C(14)	120.2(3)
N(2A)-C(9A)-C(8A)	122.8(3)	C(3A)#1-C(2A)-N(1A)	123.3(2)
C(13A)-C(12A)-C(11A)	119.3(3)	C(3A)#1-C(2A)-C(1A)	118.8(2)
C(14A)-C(13A)-C(12A)	120.2(3)	N(1A)-C(2A)-C(1A)	117.7(2)
N(3)-C(11)-C(12)	119.1(2)	C(5A)-C(6A)-C(7A)	118.6(3)
N(3)-C(11)-C(10)	119.4(2)	C(5)-C(6)-C(7)	118.7(2)

#1 -x+2,-y,-z+1 #2 -x,-y+1,-z+1

Table S2. Bond lengths [Å] and angles [°] of 2.

Zn(1')-O(1')	1.955(4)	N(1)-C(4)	1.478(7)	C(2)-C(3)	1.389(7)
Zn(1')-N(3')	2.089(5)	C(1A)-C(3A)	1.401(7)	C(10A)-C(11A)	1.505(7)
Zn(1')-N(2')	2.090(5)	C(1A)-C(2A)	1.403(7)	C(5B)-C(6B)	1.387(8)
Zn(1')-N(1')	2.240(4)	N(3B)-C(11B)	1.352(7)	C(5B)-C(4B)	1.515(8)
Zn(1')-Cl(1')	2.3227(14)	N(3B)-C(15B)	1.352(7)	C(12)-C(13)	1.383(8)
Zn(1B)-O(1B)	1.961(4)	N(2')-C(9')	1.348(7)	C(12)-C(11)	1.390(7)
Zn(1B)-N(3B)	2.088(5)	N(2')-C(5')	1.349(7)	C(12A)-C(11A)	1.392(7)
Zn(1B)-N(2B)	2.095(5)	N(3A)-C(11A)	1.343(7)	C(5)-C(6)	1.379(8)
Zn(1B)-N(1B)	2.268(4)	N(3A)-C(15A)	1.344(7)	C(5)-C(4)	1.517(8)
Zn(1B)-Cl(1B)	2.3131(14)	C(1)-C(3')	1.391(7)	C(15B)-C(14B)	1.376(8)
Zn(1A)-O(1A)	1.957(4)	C(1)-C(2)	1.408(7)	C(5')-C(6')	1.383(8)
Zn(1A)-N(2A)	2.091(5)	C(15')-C(14')	1.381(8)	C(5')-C(4')	1.507(8)
Zn(1A)-N(3A)	2.096(5)	C(11')-C(12')	1.401(8)	C(9')-C(8')	1.384(9)
Zn(1A)-N(1A)	2.244(4)	C(11')-C(10')	1.507(8)	C(4A)-C(5A)	1.522(7)
Zn(1A)- $Cl(1A)$	2.3203(14)	N(2B)-C(5B)	1.339(7)	C(7B)-C(6B)	1.379(8)
Zn(1)-O(1)	1.971(4)	N(2B)-C(9B)	1.355(7)	C(7B)-C(8B)	1.393(9)
Zn(1)-N(2)	2.076(5)	C(3A)-C(2A)#1	1.376(7)	C(11)-C(10)	1.511(7)
Zn(1)-N(3)	2.092(4)	N(2A)-C(9A)	1.343(7)	C(14B)-C(13B)	1.398(9)
Zn(1)-N(1)	2.260(4)	N(2A)-C(5A)	1.350(7)	C(5A)-C(6A)	1.382(8)
Zn(1)-Cl(1)	2.3041(15)	C(1')-C(3)	1.395(7)	C(12')-C(13')	1.378(8)
N(1A)-C(2A)	1.466(6)	C(1')-C(2')	1.404(7)	C(14')-C(13')	1.389(9)
N(1A)-C(10A)	1.468(6)	N(3)-C(15)	1.340(7)	C(12B)-C(13B)	1.379(9)
N(1A)-C(4A)	1.477(6)	N(3)-C(11)	1.349(7)	C(8')-C(7')	1.382(11)
O(1)-C(1)	1.350(6)	C(2B)-C(3B)	1.388(7)	C(6')-C(7')	1.381(10)
O(1')-C(1')	1.348(6)	C(2B)-C(1B)	1.408(7)	C(8)-C(7)	1.373(9)
N(1B)-C(2B)	1.449(6)	C(3B)-C(1B)#2	1.391(7)	C(8)-C(9)	1.373(8)
N(1B)-C(4B)	1.469(7)	C(2A)-C(3A)#1	1.376(7)	C(14)-C(15)	1.379(8)
N(1B)-C(10B)	1.479(7)	C(9B)-C(8B)	1.369(8)	C(14)-C(13)	1.387(8)
O(1B)-C(1B)	1.356(6)	N(2)-C(5)	1.346(7)	C(14A)-C(15A)	1.382(8)
O(1A)-C(1A)	1.349(6)	N(2)-C(9)	1.347(7)	C(8A)-C(7A)	1.382(9)
N(1')-C(2')	1.451(6)	C(3')-C(2')	1.386(7)	C(6A)-C(7A)	1.389(8)
N(1')-C(10')	1.473(7)	C(1B)-C(3B)#2	1.391(7)	C(6)-C(7)	1.408(9)
N(1')-C(4')	1.474(7)	C(9A)-C(8A)	1.387(8)		
N(3')-C(11')	1.334(7)	C(11B)-C(12B)	1.383(8)		
N(3')-C(15')	1.341(7)	C(11B)-C(10B)	1.509(8)		
N(1)-C(2)	1.463(6)	C(13A)-C(14A)	1.373(8)		
N(1)-C(10)	1.472(7)	C(13A)-C(12A)	1.392(8)		

O(1')-Zn(1')-N(3')	125.25(17)	C(11)-N(3)-Zn(1)	117.4(4)
O(1')-Zn(1')-N(2')	104.67(17)	C(3B)-C(2B)-C(1B)	121.2(5)
N(3')-Zn(1')-N(2')	120.37(18)	C(3B)-C(2B)-N(1B)	121.8(5)
O(1')-Zn(1')-N(1')	82.13(15)	C(1B)-C(2B)-N(1B)	116.9(4)
N(3')-Zn(1')-N(1')	78.90(16)	C(2B)-C(3B)-C(1B)#2	121.1(5)
N(2')-Zn(1')-N(1')	77.86(17)	C(3A)#1-C(2A)-C(1A)	121.8(5)
O(1')-Zn(1')-Cl(1')	99.57(12)	C(3A)#1-C(2A)-N(1A)	121.2(5)
N(3')-Zn(1')-Cl(1')	99.49(13)	C(1A)-C(2A)-N(1A)	116.8(4)
N(2')-Zn(1')-Cl(1')	102.31(14)	N(2B)-C(9B)-C(8B)	122.2(6)
N(1')-Zn(1')-Cl(1')	178.16(11)	C(5)-N(2)-C(9)	118.8(5)
O(1B)-Zn(1B)-N(3B)	101.02(17)	C(5)-N(2)-Zn(1)	116.9(4)
O(1B)-Zn(1B)-N(2B)	125.77(17)	C(9)-N(2)-Zn(1)	122.1(4)
N(3B)-Zn(1B)-N(2B)	122.88(18)	C(2')-C(3')-C(1)	121.3(5)
O(1B)-Zn(1B)-N(1B)	81.79(15)	O(1B)-C(1B)-C(3B)#2	120.6(5)
N(3B)-Zn(1B)-N(1B)	78.29(17)	O(1B)-C(1B)-C(2B)	121.7(5)
N(2B)-Zn(1B)-N(1B)	78.20(17)	C(3B)#2-C(1B)-C(2B)	117.7(5)
O(1B)-Zn(1B)-Cl(1B)	101.95(11)	N(2A)-C(9A)-C(8A)	122.7(6)
N(3B)-Zn(1B)-Cl(1B)	100.14(13)	N(3B)-C(11B)-C(12B)	121.5(5)
N(2B)-Zn(1B)-Cl(1B)	99.97(14)	N(3B)-C(11B)-C(10B)	115.8(5)
N(1B)-Zn(1B)-Cl(1B)	176.19(11)	C(12B)-C(11B)-C(10B)	122.6(5)
O(1A)-Zn(1A)-N(2A)	101.49(17)	C(14A)-C(13A)-C(12A)	118.9(5)
O(1A)-Zn(1A)-N(3A)	128.69(17)	C(3)-C(2)-C(1)	121.5(5)
N(2A)-Zn(1A)-N(3A)	120.44(17)	C(3)-C(2)-N(1)	121.1(5)
O(1A)-Zn(1A)-N(1A)	82.75(15)	C(1)-C(2)-N(1)	117.3(4)
N(2A)- $Zn(1A)$ - $N(1A)$	78.99(16)	N(1B)-C(10B)-C(11B)	110.9(4)
N(3A)-Zn(1A)-N(1A)	78.14(16)	N(1A)-C(10A)-C(11A)	111.2(4)
O(1A)- $Zn(1A)$ - $Cl(1A)$	100.09(11)	N(2B)-C(5B)-C(6B)	121.1(5)
N(2A)- $Zn(1A)$ - $Cl(1A)$	101.06(13)	N(2B)-C(5B)-C(4B)	117.9(5)
N(3A)- $Zn(1A)$ - $Cl(1A)$	99.40(13)	C(6B)-C(5B)-C(4B)	120.9(5)
N(1A)- $Zn(1A)$ - $Cl(1A)$	177.06(12)	C(13)-C(12)-C(11)	119.8(5)
O(1)-Zn(1)-N(2)	96.25(17)	C(11A)-C(12A)-C(13A)	119.1(5)
O(1)-Zn(1)-N(3)	136.62(16)	C(2)-C(3)-C(1')	120.9(5)
N(2)-Zn(1)-N(3)	116.97(18)	N(2)-C(5)-C(6)	122.4(5)
O(1)-Zn(1)-N(1)	82.41(14)	N(2)-C(5)-C(4)	115.7(5)
N(2)-Zn(1)-N(1)	79.57(17)	C(6)-C(5)-C(4)	121.9(5)
N(3)-Zn(1)-N(1)	77.53(16)	N(3B)-C(15B)-C(14B)	123.0(6)
O(1)-Zn(1)-Cl(1)	100.62(11)	C(3')-C(2')-C(1')	121.5(5)

N(2)-Zn(1)-Cl(1)	103.27(14)	C(3')-C(2')-N(1')	121.9(5)
N(3)- $Zn(1)$ - $Cl(1)$	98.03(13)	C(1')-C(2')-N(1')	116.5(4)
N(1)- $Zn(1)$ - $Cl(1)$	175.50(12)	N(2')-C(5')-C(6')	121.0(6)
C(2A)-N(1A)-C(10A)	113.0(4)	N(2')-C(5')-C(4')	116.3(5)
C(2A)-N(1A)-C(4A)	114.1(4)	C(6')-C(5')-C(4')	122.7(6)
C(10A)-N(1A)-C(4A)	110.8(4)	N(3A)-C(11A)-C(12A)	121.5(5)
C(2A)-N(1A)-Zn(1A)	103.7(3)	N(3A)-C(11A)-C(10A)	117.3(5)
C(10A)-N(1A)-Zn(1A)	108.7(3)	C(12A)-C(11A)-C(10A)	121.1(5)
C(4A)-N(1A)-Zn(1A)	106.0(3)	N(2')-C(9')-C(8')	122.1(6)
C(1)-O(1)-Zn(1)	114.4(3)	N(1')-C(10')-C(11')	111.4(4)
C(1')-O(1')-Zn(1')	114.1(3)	N(1A)-C(4A)-C(5A)	111.0(4)
C(2B)-N(1B)-C(4B)	112.9(4)	C(6B)-C(7B)-C(8B)	119.0(5)
C(2B)-N(1B)-C(10B)	112.9(4)	N(3)-C(11)-C(12)	121.0(5)
C(4B)-N(1B)-C(10B)	110.7(4)	N(3)-C(11)-C(10)	117.8(5)
C(2B)-N(1B)-Zn(1B)	104.4(3)	C(12)-C(11)-C(10)	121.1(5)
C(4B)-N(1B)-Zn(1B)	109.2(3)	C(7B)-C(6B)-C(5B)	119.6(6)
C(10B)-N(1B)-Zn(1B)	106.3(3)	C(15B)-C(14B)-C(13B)	117.8(6
C(1B)-O(1B)-Zn(1B)	114.9(3)	N(2A)-C(5A)-C(6A)	122.2(5
C(1A)-O(1A)-Zn(1A)	114.1(3)	N(2A)-C(5A)-C(4A)	116.1(5
C(2')-N(1')-C(10')	112.6(4)	C(6A)-C(5A)-C(4A)	121.6(5
C(2')-N(1')-C(4')	114.4(4)	C(13')-C(12')-C(11')	118.2(6
C(10')-N(1')-C(4')	111.7(4)	C(15')-C(14')-C(13')	118.7(5
C(2')-N(1')-Zn(1')	103.9(3)	C(13B)-C(12B)-C(11B)	119.3(6
C(10')-N(1')-Zn(1')	106.8(3)	N(1)-C(10)-C(11)	110.0(4
C(4')-N(1')-Zn(1')	106.6(3)	C(7')-C(8')-C(9')	118.2(6
C(11')-N(3')-C(15')	119.5(5)	C(7')-C(6')-C(5')	119.4(6
C(11')-N(3')-Zn(1')	116.1(4)	C(7)-C(8)-C(9)	119.2(6
C(15')-N(3')-Zn(1')	124.1(4)	C(15)-C(14)-C(13)	118.8(5
C(2)-N(1)-C(10)	113.0(4)	C(13A)-C(14A)-C(15A)	119.3(5
C(2)-N(1)-C(4)	112.4(4)	N(1B)-C(4B)-C(5B)	111.8(4
C(10)-N(1)-C(4)	111.1(4)	C(7A)-C(8A)-C(9A)	118.7(5
C(2)-N(1)-Zn(1)	103.8(3)	N(1)-C(4)-C(5)	112.7(4
C(10)-N(1)-Zn(1)	110.0(3)	C(9B)-C(8B)-C(7B)	118.7(5
C(4)-N(1)-Zn(1)	106.1(3)	N(3)-C(15)-C(14)	122.6(5
O(1A)-C(1A)-C(3A)	121.0(5)	C(5A)-C(6A)-C(7A)	118.9(6
O(1A)-C(1A)-C(2A)	122.0(5)	C(12')-C(13')-C(14')	119.7(5
C(3A)-C(1A)-C(2A)	116.9(5)	C(5)-C(6)-C(7)	118.0(6
C(11B)-N(3B)-C(15B)	118.6(5)	N(3A)-C(15A)-C(14A)	122.2(5

C(11B)-N(3B)-Zn(1B)	117.0(4)	C(8A)-C(7A)-C(6A)	119.2(6)
C(15B)-N(3B)-Zn(1B)	122.6(4)	N(2)-C(9)-C(8)	122.3(6)
C(9')-N(2')-C(5')	119.4(5)	N(1')-C(4')-C(5')	109.2(4)
C(9')-N(2')-Zn(1')	122.8(4)	C(12B)-C(13B)-C(14B)	119.7(6)
C(5')-N(2')-Zn(1')	116.3(4)	C(8)-C(7)-C(6)	119.4(6)
C(11A)-N(3A)-C(15A)	118.9(5)	C(12)-C(13)-C(14)	118.6(5)
C(11A)-N(3A)-Zn(1A)	116.8(3)	C(6')-C(7')-C(8')	119.8(6)
C(15A)-N(3A)-Zn(1A)	124.0(4)	C(2A)#1-C(3A)-C(1A)	121.2(5)
O(1)-C(1)-C(3')	120.9(5)	C(9A)-N(2A)-C(5A)	118.3(5)
O(1)-C(1)-C(2)	121.9(4)	C(9A)-N(2A)-Zn(1A)	124.5(4)
C(3')-C(1)-C(2)	117.2(5)	C(5A)-N(2A)-Zn(1A)	116.2(3)
N(3')-C(15')-C(14')	121.9(6)	O(1')-C(1')-C(3)	121.0(5)
N(3')-C(11')-C(12')	121.8(5)	O(1')-C(1')-C(2')	121.6(5)
N(3')-C(11')-C(10')	117.3(5)	C(3)-C(1')-C(2')	117.4(5)
C(12')-C(11')-C(10')	120.8(5)	C(15)-N(3)-C(11)	119.0(5)
C(5B)-N(2B)-C(9B)	119.3(5)	C(15)-N(3)-Zn(1)	122.8(4)
C(5B)-N(2B)-Zn(1B)	117.3(4)		
C(9B)-N(2B)-Zn(1B)	122.8(4)		

#1 -x+1,-y+1,-z+1 #2 -x+1,-y,-z

O(1)-C(1)	1.230(4)	N(2)-H(2N)	1.07(4)	C(6)-C(7)	1.349(5)
C(1)-C(3)	1.443(5)	C(10)-C(11)	1.511(5)	C(6)-C(5)	1.349(5)
C(1)-C(2)	1.508(5)	C(14)-C(15)	1.370(6)	C(4)-C(5)	1.511(4)
N(1)-C(2)	1.375(4)	C(14)-C(13)	1.382(6)	C(12)-C(11)	1.375(5)
N(1)-C(4)	1.451(4)	C(8)-C(7)	1.372(6)	C(12)-C(13)	1.390(5)
N(1)-C(10)	1.462(4)	C(3)-C(2)#1	1.355(5)		
N(3)-C(11)	1.338(5)	C(9)-C(8)	1.379(6)		
N(3)-C(15)	1.345(5)	C(9)-N(2)	1.393(5)		
O(1)-C(1)-C(3))	120.8(3)	N(1)-C(2)-	-C(1)	117.5(3)
O(1)-C(1)-C(2))	120.2(3)	C(6)-C(5)-	•N(2)	119.1(3)
C(3)-C(1)-C(2))	118.8(3)	C(6)-C(5)-	-C(4)	115.4(3)
C(2)-N(1)-C(4))	119.9(3)	N(2)-C(5)-	-C(4)	125.5(3)
C(2)-N(1)-C(10	0)	123.7(3)	C(5)-N(2)-	-C(9)	118.7(3)
C(4)-N(1)-C(10	0)	115.6(3)	C(5)-N(2)-	-H(2N)	119(2)
C(11)-N(3)-C(2	15)	123.2(3)	C(9)-N(2)-	-H(2N)	123(2)
C(7)-C(6)-C(5))	123.0(3)	N(1)-C(10)-C(11)	113.3(3)
N(1)-C(4)-C(5))	113.7(3)	C(15)-C(1-	4)-C(13)	118.7(4)
C(11)-C(12)-C	(13)	119.0(4)	N(3)-C(15)-C(14)	119.6(4)
C(2)#1-C(3)-C	(1)	121.5(3)	N(3)-C(11)-C(12)	119.0(3)
C(8)-C(9)-N(2))	120.6(3)	N(3)-C(11)-C(10)	118.7(3)
C(3)#1-C(2)-N	(1)	123.0(3)	C(12)-C(1	1)-C(10)	122.3(3)
C(3)#1-C(2)-C	(1)	119.1(3)	C(7)-C(8)-	·C(9)	119.2(3)
C(14)-C(13)-C	(12)	120.4(4)	C(6)-C(7)-	·C(8)	119.3(3)

Table S3. Bond lengths [Å] and angles [°] of 3.

#1 -x+1,-y+1,-z

Table S4. Bond lengths [Å] and angles [°] of 4.

O(1)-C(1)	1.3665(17	7)	N(2)-C(9)	1.3441(19)	O(2W)-H(3V	N)	0.89(3)
O(1)-H(1O)	0.86(3)		N(2)-C(5)	1.3450(18)	O(2W)-H(4W	N)	0.90(3)
O(1W)-H(1W)	0.76(2)		N(2)-H(2N)	0.90(2)	C(2)-C(3)#1		1.3973(19)
O(1W)-H(2W)	0.83(3)		C(6)-C(5)	1.381(2)	C(9)-C(8)		1.371(2)
N(1)-C(2)	1.4312(17	7)	C(6)-C(7)	1.387(2)	C(15)-C(14)		1.375(2)
N(1)-C(4)	1.4621(17	7)	C(1)-C(3)	1.3905(19)	C(13)-C(12)		1.388(2)
N(1)-C(10)	1.4750(17	7)	C(1)-C(2)	1.3995(19)	C(13)-C(14)		1.391(2)
N(3)-C(11)	1.3441(18	3)	C(4)-C(5)	1.5032(18)	C(11)-C(12)		1.383(2)
N(3)-C(15)	1.3470(19))	C(3)-C(2)#1	1.3974(19)	C(8)-C(7)		1.392(2)
N(3)-H(1N)	0.89(2)		C(10)-C(11)	1.5065(18)			
С(1)-О(1)-Н(1О)	107	.7(16)	N(1)-C(10)-C	(11)	111	.30(11)
H(1W)-O(1W)-H	H(2W)	105	(2)	H(3W)-O(2W	′)-H(4W)	100	(2)
C(2)-N(1)-C(4)		115	.41(11)	C(3)#1-C(2)-	C(1)	118	.12(12)
C(2)-N(1)-C(10))	114	.63(10)	C(3)#1-C(2)-1	N(1)	122	.65(12)
C(4)-N(1)-C(10))	110	.10(11)	C(1)-C(2)-N(1)	119	.19(12)
C(11)-N(3)-C(15	5)	123	.52(13)	N(2)-C(5)-C(6)	118	.37(13)
C(11)-N(3)-H(11	N)	120	.7(13)	N(2)-C(5)-C(4	4)	118	.37(13)
C(15)-N(3)-H(11	N)	115	.8(13)	C(6)-C(5)-C(4	4)	123	.09(13)
C(9)-N(2)-C(5)		123	.05(13)	N(2)-C(9)-C(4	8)	120	.22(14)
C(9)-N(2)-H(2N)	116	.5(12)	N(3)-C(15)-C	(14)	119	.81(13)
C(5)-N(2)-H(2N)	120	.4(12)	C(12)-C(13)-	C(14)	120	.22(14)
C(5)-C(6)-C(7)		119	.83(14)	N(3)-C(11)-C	(12)	118	.24(13)
O(1)-C(1)-C(3)		121	.60(13)	N(3)-C(11)-C	(10)	117	.67(12)
O(1)-C(1)-C(2)		118	.46(12)	C(12)-C(11)-	C(10)	124	.02(12)
C(3)-C(1)-C(2)		119	.93(13)	C(9)-C(8)-C(7)	118	.45(14)
N(1)-C(4)-C(5)		113	.39(11)	C(6)-C(7)-C(8	8)	119	.90(14)
C(1)-C(3)-C(2)#	1	121	.95(13)	C(15)-C(14)-	C(13)	118	.43(14)
C(11)-C(12)-C(1	3)	119	.74(13)				

#1 -x,-y,-z+1

Table S5. Principal singlet-singlet excitations, absorption maxima, λ , oscillator strengths, *f*, of the principal electronic transitions in the simulated absorption spectra of $[H_2BBQ]^{2+}[ZnCl_4]^{2-}$, $[H_2BBQ]^{2+}$ and [BBQ] molecules calculated by the TDDFT/CAM-B3LYP/6-31G(d,p)/PCM computational protocol.

Excitation (% composition)	$\lambda(nm)$	f(au)
[H ₂ BBQ] ²⁺ [Zn	Cl ₄] ²⁻	
HOMO-22 \rightarrow LUMO (16%)		
$HOMO-17 \rightarrow LUMO+(21\%)$	202	0.162
$HOMO \rightarrow LUMO + 9 (19\%)$		
HOMO-9 \rightarrow LUMO+4 (13%)		
$HOMO-8 \rightarrow LUMO+4 (35\%)$	232	0.157
$HOMO-17 \rightarrow LUMO+8 (8\%)$		
$HOMO-1 \rightarrow LUMO (96\%)$	330	0.612
HOMO-15 \rightarrow LUMO (20%)		
HOMO-12 \rightarrow LUMO (56%)	368	0.0015
$HOMO-11 \rightarrow LUMO (11\%)$		
HOMO \rightarrow LUMO (97%)	461	0.0005
$[H_2BBQ]^{2+}$	+	
HOMO-14 \rightarrow LUMO (12%)		
HOMO-1 \rightarrow LUMO+6 (20%)	192	0.197
$HOMO \rightarrow LUMO+9 (10\%)$		
HOMO-14 \rightarrow LUMO (13%)		
HOMO-11 \rightarrow LUMO (24%)	202	0.274
HOMO-9 \rightarrow LUMO (19%)	205	0.274
HOMO \rightarrow LUMO+9 (27%)		
HOMO-7 \rightarrow LUMO+2 (13%)		
HOMO-6 \rightarrow LUMO+1 (22%)	222	0.200
HOMO-5 \rightarrow LUMO+1 (10%)	232	0.209
HOMO-4 \rightarrow LUMO+2 (20%)		
HOMO-1 \rightarrow LUMO (97%)	329	0.647
HOMO-4 \rightarrow LUMO (67%)	266	0.0006
HOMO-7 \rightarrow LUMO (21%)	300	0.0006
$HOMO \rightarrow LUMO (98\%)$	456	0.0000
[BBQ]		
HOMO-16 \rightarrow LUMO (11%)		
HOMO-1 \rightarrow LUMO+2 (10%)	196	0.175
HOMO \rightarrow LUMO+9 (12%)		
HOMO-4 \rightarrow LUMO+2 (29%)	226	0.100
HOMO-3 \rightarrow LUMO+2 (24%)	220	0.109
HOMO-4 \rightarrow LUMO (45%)	240	0.745
HOMO-3 \rightarrow LUMO (22%)	340	0.745
HOMO-11 \rightarrow LUMO (10%)		
HOMO-6 \rightarrow LUMO (24%)	380	0.004
HOMO-2 \rightarrow LUMO (40%)		
HOMO \rightarrow LUMO ^{β} (98%)	493	0.0007

Table S6. Cartesian Coordinates and energies of [BBQ], $[H_2BBQ]^{2+}$ and $[H_2BBQ]^{2+}[ZnCl_4]^{2-}$ molecules in their singlet ground and triplet excited states calculated by the BP86/6-31G(d,p)/PCM computational protocol at the /6-31G(d,p)/PCM level of theory in aqueous solution.

[BBQ] (singlet)

0,0,0.6812195932,-1.3057063314,1.0180767125 0,0,2.5350415298,3.3264618367,-1.1160158576 N, 0, -0.374794012, 2.922227076, -0.849716535 N, 0, 0.2575238557, 5.7607697233, 0.2477825722 N, 0, 3.5099250833, -0.6772932206, 1.2282432045 N, 0, -1.855717537, 3.2663475674, 1.6101912591 C, 0, 1.1063063691, -0.1800619554, 0.6496999759 C, 0, -0.0648196931, 6.88349351, 0.9197986709 C, 0, -0.5076941792, 5.4310341906, -0.8212522025 C, 0, 2, 0736646394, 2, 3030432603, -0, 5504753612 N, 0, 4.802626827, -3.565521357, 2.160933934 N, 0, 4.9438153997, -1.4627307525, -1.1389244859 C, 0, 0.1990472508, 0.8198791968, 0.1618710905 C, 0, 2.5949639463, 0.1647364954, 0.6635724184 C, 0, 2.7248481072, -3.8896856231, 0.9475696222 C, 0, 2.9748838414, 1.3329070572, 0.012317478 C, 0, 5.4895136801, -0.5180519475, -0.3427227113 C, 0, 0.5680671997, 2.0357538748, -0.4100596666 C, 0, -2.3950190048, 2.4871573932, 0.6505237221 C, 0, -2.4305119735, 3.2348895343, 2.8322210748 C, 0, -0.0988843701, 4.179456301, -1.5848109767 C, 0, 3.5884323334, -3.1232936211, 1.7543008927 C, 0, -1.5956384522, 6.2163585738, -1.2474662543 C, 0, -1.1341139441, 7.7273819337, 0.5742832643 C, 0, 3.1915388096, -1.7309916868, 2.2234166471 C, 0, -3.5501025096, 2.4530269955, 3.1519505319 C, 0, -3.5136013402, 1.6592046985, 0.8736560472 C, 0, 6.5431095374, -0.8568002396, -2.8667773147 C, 0, 4.3889216451, -5.6384959826, 0.964449983 C, 0, 4.9462951972, -0.3991127655, 1.0803697135 C, 0, 5.1822576737, -4.7993153716, 1.7601860178 C, 0, -1.9143221832, 7.3842004861, -0.5375286237 C, 0, 6.5651489078, 0.2964897666, -0.7475278016 C, 0, 5.4685509302, -1.6125118181, -2.3741612687 C, 0, -1.7980625347, 2.563613021, -0.7561692025 C, 0, 7.1030327626, 0.1194317836, -2.0295074719 C,0,3.1316025662,-5.1700786653,0.5510989543 C, 0, -4.1028200219, 1.6476563559, 2.144718327 H, 0, 0.57155611, 7.1277225214, 1.7805538237 H.O.-O.848456387.0.5290590626.0.2511697027 H, 0, 1.7594502903, -3.4684982938, 0.652699927 H, 0, 4.0248684188, 1.6097985376, -0.0941263988 H, 0, -1.966677309, 3.8732590132, 3.5951313348 H, 0, -0.6481131963, 4.1316549987, -2.54219086 H, 0, 0.981454707, 4.2074510669, -1.7797795722 H, 0, -2.1781820232, 5.920473582, -2.1260076446 H, 0, -1.3403981224, 8.6274897901, 1.1604540693 H,0,2.1173617233,-1.6904714114,2.4301559967 H, 0, 3.7639235291, -1.5000849995, 3.1394266037 H, 0, -3.9707177098, 2.4732577067, 4.1612646694 H, 0, -3.9111313627, 1.0363873281, 0.0655688462 H, 0, 6.9239795303, -1.0280809627, -3.877553311 H, 0, 4.7485264235, -6.6316646315, 0.6802064983 H, 0, 5.470047036, -1.140677135, 1.7084088241 H,0,5.1835332561,0.6014129969,1.4903258357 H, 0, 6.1708675249, -5.1319133061, 2.1013666119 H, 0, -2.755262405, 8.0116954934, -0.8490120336 H, 0, 6.9691901751, 1.0554027572, -0.0696012488 H, 0, 5.0020704297, -2.3827668792, -3.0018391325 H, 0, -1.9697585324, 1.6034636762, -1.2789429486 H, 0, -2.3537087494, 3.3303069492, -1.3216679916 H, 0, 7.9388540838, 0.7384195281, -2.3701178101 H, 0, 2.4793615273, -5.7939707769, -0.0683283864 H, 0, -4.9731748986, 1.0155040939, 2.3463182146

Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies=

-1637.325134
-1637.292487
-1637.291543
-1637.396305

[BBQ] (triplet)

0,0,1.1226320432,-0.9872795543,1.784881249 0,0,2.4500139103,3.188297672,-1.5550364988 N, 0, -0.3567357754, 2.6272426307, -0.9599178717 N,0,0.2629155993,4.8085724019,0.9481086645 N, 0, 3.9417341185, -0.4156818744, 1.1886846335 N, 0, -2.5669493014, 1.9479522779, 1.1242898243 C,0,1.4814660479,0.0097441194,1.0669313608 C, 0, 0.1019944131, 5.6753287167, 1.9694690487 C, 0, -0.4749044029, 5.0068041805, -0.1659045292 C, 0, 2.1005810663, 2.2824642055, -0.7191109305 N, 0, 5.5002647124, -3.0137431383, 2.5470220684 N, 0, 4.6609878683, -1.6780356448, -1.3216568638 C, 0, 0.4736379928, 0.8761279911, 0.5017185958 c,0,2.8788273639,0.3393720597,0.7291001867 C, 0, 3.2351634116, -3.5451999935, 1.8494633151 C, 0, 3.1085233716, 1.4599417963, -0.1003541018 C, 0, 5.374073839, -0.6157852068, -0.8843057624 C, 0, 0.705723311, 1.9475740234, -0.3871481076 C, 0, -2.7451263672, 2.3873290857, -0.143005068 C, 0, -3.5144582725, 2.2529227954, 2.0335161374 C, 0, -0.2373204173, 4.0412137535, -1.3257062054 C, 0, 4.2257853433, -2.640916752, 2.2798183847 C, 0, -1.3839655408, 6.0742517186, -0.2977905288 C, 0, -0.7727659303, 6.7724250083, 1.9310809099 C, 0, 3.8911667822, -1.1676964971, 2.4620646062 C, 0, -4.6699485943, 2.9932144793, 1.7344974488 C, 0, -3.8693649238, 3.1348618947, -0.5377999443 C,0,5.6177480514,-1.3436986928,-3.5316727055 C, 0, 4.8923001247, -5.2955036902, 1.9750893433 C,0,5.2819075412,-0.2805930401,0.601979076 C, 0, 5.8115270607, -4.3199438508, 2.3875814376 C, 0, -1.5295270301, 6.9740785631, 0.7677404452 C, 0, 6.2285893838, 0.128088626, -1.7205121885 C, 0, 4.7879387015, -2.0173158396, -2.6219242471 C, 0, -1.6703924951, 1.9922591291, -1.1546531016 C, 0, 6.3557324406, -0.2462348676, -3.0654980153 C,0,3.5743489927,-4.8959212188,1.7009894033 C, 0, -4.849136971, 3.4411929116, 0.41873117 H, 0, 0.7102351496, 5.4839711831, 2.8628684448 H, 0, -0.5509561157, 0.6828067313, 0.8375049602 H,0,2.2280800556,-3.1674989375,1.6470126957 H,0,4.1297455228,1.7443640531,-0.3655744033 H, 0, -3.3418297877, 1.8822669924, 3.0515946395 H, 0, -0.9464929597, 4.250505133, -2.142424002 H, 0, 0.8041904598, 4.1727949424, -1.6908015178 H, 0, -1.9646501269, 6.193695563, -1.2176215013 H, 0, -0.855220638, 7.4450461203, 2.7894697291 H, 0, 2.8774413582, -1.0599141171, 2.8671854829 H, 0, 4.6260923303, -0.7202500756, 3.1569607881 H, 0, -5.4051846332, 3.2076930172, 2.5150593258 H, 0, -3.9757248504, 3.4643842829, -1.575928402 H, 0, 5.6778395601, -1.6706528901, -4.5735850272 H,0,5.2040079259,-6.3389846498,1.8726287961 H, 0, 5.9282921718, -0.9831895817, 1.1577267933 H,0,5.690739785,0.7321065746,0.7862474184 H, 0, 6.8507433607, -4.5958461931, 2.6069714118 H, 0, -2.2272586299, 7.8139758056, 0.6916805024 H, 0, 6.7816376509, 0.9849566997, -1.3221543646 H, 0, 4.1935750235, -2.8792026029, -2.9518296932 H, 0, -1.5254636263, 0.9008116358, -1.1320736703 H, 0, -2.0140515864, 2.2613758791, -2.1694931331 H, 0, 7.0129965295, 0.3144429769, -3.7373753465 H, 0, 2.8252880664, -5.6259612031, 1.3779591213 H, 0, -5.7353594658, 4.0190924807, 0.1392303125

Sum of efectionite and zero point Energies-	1001.100001
Sum of electronic and thermal Energies=	-1637.253014
Sum of electronic and thermal Enthalpies=	-1637.252070
Sum of electronic and thermal Free Energies=	-1637.357335

[BBQH₂]²⁺ (singlet)

0,0,-0.2332241621,1.4203493421,-1.3084760589 0,0,4.0521561062,-1.1603998047,0.7323296455 N, 0, 1.4973505022, -2.4050385266, 0.9408922916 N, 0, 3.3080362116, -4.4008042403, -0.027156381 N, 0, 2.3216374701, 2.6647323855, -1.5175261761 N, 0, 0.868965462, -4.1046435333, -1.2602340142 C, 0, 0.7679371737, 0.8042041038, -0.8775675953 C, 0, 4.1999042228, -5.2095695692, -0.6573341861 C, 0, 3.5555537007, -3.8497684298, 1.1869915959 C, 0, 3.0510262232, -0.5444031671, 0.3011394424 N, 0, 0.5109321858, 4.6606402684, -0.5500035039 N,0,2.9498895598,4.3642233829,0.6836593432 C, 0, 0.6342467251, -0.5098052571, -0.294117765 C, 0, 2.1510708999, 1.4395608426, -0.9114822981 C, 0, -0.9496482268, 4.3990182874, -2.4049004426 C, 0, 3.1847331593, 0.7695680253, -0.2824075305 C, 0, 3.9707255806, 3.8342442578, -0.0298538696 C, 0, 1.6679248127, -1.1798252677, 0.3349120545 C, 0, -0.1518106847, -3.5745425038, -0.5467252606 C, 0, 0.6111052763, -4.6069925518, -2.4886178229 C, 0, 2.4826169104, -3.0054139681, 1.8528638951 C, 0, 0.2636556095, 4.1096287339, -1.7642127279 C, 0, 4.7691452773, -4.1388088988, 1.8272869579 C, 0, 5.4176498286, -5.5164811704, -0.0626086294 C, 0, 1.3364769807, 3.2648805006, -2.4297248868 C, 0, -0.6708192014, -4.6155069426, -3.0513768805 C, 0, -1.46624128, -3.5434640728, -1.0377931481 C, 0, 4.4896070571, 4.8750317666, 2.4748736861 C, 0, -1.5983427112, 5.7769423829, -0.5152457266 C, 0, 3. 63827695, 3. 3184013778, -1. 4265126631 C, 0, -0.3808836971, 5.4696999337, 0.0798765878 c,0,5.7017080898,-4.9737276384,1.2037891287 C, 0, 5.2851497677, 3.8032162365, 0.4612304184 C, 0, 3.2076889223, 4.8664794772, 1.9120755147 C, 0, 0.1806787004, -3.0586227047, 0.8498919586 C, 0, 5.5490103674, 4.3368450941, 1.7304458947 C, 0, -1.8821578453, 5.2342272467, -1.7817161792 C, 0, -1.7301639395, -4.0771711867, -2.3069587962 H, 0, 2.346956918, -4.2145546841, -0.5287832045 H, 0, 3.8965314007, -5.5918985077, -1.6331837654 H, 0, 1.4717111713, 4.4742277739, -0.0481688579 H, 0, -0.3817982967, -0.9045814957, -0.3347815541 H, 0, -1.1534497652, 3.9586368748, -3.3835391507 H, 0, 4.2007649039, 1.1643715842, -0.2417056863 H, 0, 1.4674010477, -5.0166774102, -3.0336656618 H, 0, 1.9244820034, -3.6505671728, 2.5541838196 H,0,2.9828701475,-2.2319975239,2.44981342 H, 0, 4.973127714, -3.6983971783, 2.8058827183 H, 0, 6.1255317818, -6.1667304051, -0.5792534927 H, 0, 0.8361233546, 2.4912934423, -3.0263723664 H,0,1.8946783913,3.9096574124,-3.1313646451 H, 0, -0.8281574507, -5.0336311115, -4.0484601781 H, 0, -2.2654384741, -3.1044177997, -0.4336856393 H, 0, 4.6468781114, 5.2930953619, 3.4719955516 H, 0, -2.3061935582, 6.4274166598, 0.0011457467 H, 0, 3.6348093288, 4.1702529298, -2.1256343886 H, 0, 4.4315494932, 2.631192, -1.771894505 H, 0, -0.0776865744, 5.8519384379, 1.055813859 H, 0, 6.6507537942, -5.1975596955, 1.6981595096 H, 0, 6.0843948297, 3.3642895678, -0.1428992673 H,0,2.3513681403,5.2760542008,2.4571617155 H, 0, -0.612542915, -2.371318629, 1.1952082591 H, 0, 0.1840337135, -3.9104303749, 1.5490665804 H,0,6.5652299055,4.3228068163,2.1346027144 H, 0, -2.8309743939, 5.4583480804, -2.2763952162 H, 0, -2.7463937079, -4.0630863655, -2.7110951871

rgies= -1638.237996
les= -1638.206272
pies= -1638.205328
Inergies= -1638.303617

[BBQH₂]²⁺ (triplet)

0,0,-0.3348596916,1.5156681789,-1.0803683337 0,0,4.1543953906,-1.2558315314,0.502015675 N, 0, 1.5483977005, -2.3689190645, 1.0086376561 N, 0, 3.3512581845, -4.3820743222, 0.0278011243 N, 0, 2.2709909629, 2.6292374511, -1.5860527247 N, 0, 0.9311129484, -4.00548364, -1.2522791133 C,0,0.7213133419,0.875653742,-0.7672561299 C, 0, 4.2277868177, -5.2180106168, -0.5896493338 C, 0, 3.6089801293, -3.8212534344, 1.2352418306 C, 0, 3.0982228787, -0.6158572857, 0.1888375685 N, 0, 0.4676310705, 4.6415522422, -0.6045040412 N,0,2.8874922902,4.2644496025,0.6761434743 C, 0, 0.6406989282, -0.3940229016, -0.084982381 C, 0, 2.0789997761, 1.4008197409, -0.9756498567 C, 0, -0.9903828586, 4.3988544567, -2.4647792561 C, 0, 3.1788271315, 0.6538042974, -0.4934461453 C, 0, 3.9043635009, 3.7436944682, -0.0515040739 C, 0, 1.7404735583, -1.1407753367, 0.3976742304 C, 0, -0.085493106, -3.4838521105, -0.5249172878 C, 0, 0.6778881579, -4.4259694241, -2.5111481188 C, 0, 2.5590209032, -2.9488598538, 1.9030786336 C, 0, 0.2103385674, 4.0815448928, -1.8123901954 C,0,4.8100387706,-4.1379731202,1.887298458 C, 0, 5.4346432999, -5.547589589, 0.0136842544 C, 0, 1.2604068111, 3.2093265637, -2.480376602 C, 0, -0.5946781615, -4.3576278253, -3.0927307618 C, 0, -1.388949966, -3.3770360728, -1.0323325605 C, 0, 4.4128824857, 4.6160284773, 2.5169737889 C, 0, -1.6156657305, 5.8072546973, -0.5904712096 C, 0, 3.5666971536, 3.3235081853, -1.4771067879 C, 0, -0.4090723273, 5.4771746757, 0.0131216622 C, 0, 5.7251428463, -5.0001313765, 1.2770623237 C,0,5.2077960217,3.6370775026,0.4560045908 C, 0, 3.1403431453, 4.6842271287, 1.935323838 C, 0, 0.2524355587, -3.0627661856, 0.900357471 C, 0, 5.4663705801, 4.0860377086, 1.759443454 C, 0, -1.9056813127, 5.2606923011, -1.8543440708 C, 0, -1.6478701738, -3.8267289416, -2.3354413864 H,0,2.4070183626,-4.1731718974,-0.4865809045 H, 0, 3.9209369122, -5.6036147152, -1.5628241799 H,0,1.4117996612,4.4323404496,-0.0898940426 H, 0, -0.3826391327, -0.7157113446, 0.1225031861 H, 0, -1.1970796159, 3.9577809688, -3.4424937223 H, 0, 4.2021320289, 0.9753321818, -0.7013483397 H,0,1.5288644136,-4.8317420301,-3.0672512636 H,0,2.0206461914,-3.5627974116,2.647394432 H, 0, 3.0786102464, -2.1545665005, 2.4533102729 H, 0, 5.0171523719, -3.6961776876, 2.8646008859 H, 0, 6.1286785214, -6.2200383949, -0.4931657475 H, 0, 0.7408870503, 2.4151238012, -3.0308149904 H,0,1.7988066216,3.823451554,-3.2245180294 H, 0, -0.7483779685, -4.7114005855, -4.1150054558 H, 0, -2.1848358873, -2.9476954061, -0.4170139722 H, 0, 4.566336702, 4.9692275705, 3.5394847333 H, 0, -2.3098469097, 6.4794101146, -0.0834271796 H, 0, 3.5088932804, 4.2229421584, -2.1117192869 H, 0, 4.3787531874, 2.7029175527, -1.8956827969 H, 0, -0.1026119809, 5.862129903, 0.986678101 H, 0, 6.6647431178, -5.2438610048, 1.7800062098 H, 0, 6.003947838, 3.2085249843, -0.1595223744 H, 0, 2.2891275908, 5.0892865076, 2.4915819698 H, 0, -0.559341386, -2.4414578842, 1.3184212052 H, 0, 0.3097922798, -3.9617681594, 1.5356255377 H,0,6.4742216919,4.0133357019,2.1779294727 H, 0, -2.8450464191, 5.5048516593, -2.3575166375 H, 0, -2.6557353534, -3.753858766, -2.7538697466

Sum of electronic and zero-point Energies=	-1638.186835
Sum of electronic and thermal Energies=	-1638.154789
Sum of electronic and thermal Enthalpies=	-1638.153845
Sum of electronic and thermal Free Energies=	-1638.253840

[BBQH₂][ZnCl₄]²⁻ (singlet)

0,0,1.1226320432,-0.9872795543,1.784881249 0,0,2.4500139103,3.188297672,-1.5550364988 N, 0, -0.3567357754, 2.6272426307, -0.9599178717 N,0,0.2629155993,4.8085724019,0.9481086645 N, 0, 3.9417341185, -0.4156818744, 1.1886846335 N, 0, -2.5669493014, 1.9479522779, 1.1242898243 C,0,1.4814660479,0.0097441194,1.0669313608 C, 0, 0.1019944131, 5.6753287167, 1.9694690487 C, 0, -0.4749044029, 5.0068041805, -0.1659045292 C, 0, 2.1005810663, 2.2824642055, -0.7191109305 N, 0, 5.5002647124, -3.0137431383, 2.5470220684 N, 0, 4.6609878683, -1.6780356448, -1.3216568638 C, 0, 0.4736379928, 0.8761279911, 0.5017185958 C.0.2.8788273639.0.3393720597.0.7291001867 C, 0, 3.2351634116, -3.5451999935, 1.8494633151 C, 0, 3.1085233716, 1.4599417963, -0.1003541018 C, 0, 5.374073839, -0.6157852068, -0.8843057624 C, 0, 0.705723311, 1.9475740234, -0.3871481076 C, 0, -2.7451263672, 2.3873290857, -0.143005068 C, 0, -3.5144582725, 2.2529227954, 2.0335161374 C, 0, -0.2373204173, 4.0412137535, -1.3257062054 C, 0, 4.2257853433, -2.640916752, 2.2798183847 C, 0, -1.3839655408, 6.0742517186, -0.2977905288 C, 0, -0.7727659303, 6.7724250083, 1.9310809099 C, 0, 3.8911667822, -1.1676964971, 2.4620646062 C, 0, -4.6699485943, 2.9932144793, 1.7344974488 C, 0, -3.8693649238, 3.1348618947, -0.5377999443 C,0,5.6177480514,-1.3436986928,-3.5316727055 C, 0, 4.8923001247, -5.2955036902, 1.9750893433 C,0,5.2819075412,-0.2805930401,0.601979076 C, 0, 5.8115270607, -4.3199438508, 2.3875814376 C, 0, -1.5295270301, 6.9740785631, 0.7677404452 C, 0, 6.2285893838, 0.128088626, -1.7205121885 C, 0, 4.7879387015, -2.0173158396, -2.6219242471 C, 0, -1.6703924951, 1.9922591291, -1.1546531016 C, 0, 6.3557324406, -0.2462348676, -3.0654980153 C,0,3.5743489927,-4.8959212188,1.7009894033 C, 0, -4.849136971, 3.4411929116, 0.41873117 H, 0, 0.7102351496, 5.4839711831, 2.8628684448 H, 0, -0.5509561157, 0.6828067313, 0.8375049602 H,0,2.2280800556,-3.1674989375,1.6470126957 H,0,4.1297455228,1.7443640531,-0.3655744033 H, 0, -3.3418297877, 1.8822669924, 3.0515946395 H, 0, -0.9464929597, 4.250505133, -2.142424002 H,0,0.8041904598,4.1727949424,-1.6908015178 H, 0, -1.9646501269, 6.193695563, -1.2176215013 H, 0, -0.855220638, 7.4450461203, 2.7894697291 H, 0, 2.8774413582, -1.0599141171, 2.8671854829 H, 0, 4.6260923303, -0.7202500756, 3.1569607881 H, 0, -5.4051846332, 3.2076930172, 2.5150593258 H, 0, -3.9757248504, 3.4643842829, -1.575928402 H, 0, 5.6778395601, -1.6706528901, -4.5735850272 H, 0, 5.2040079259, -6.3389846498, 1.8726287961 H, 0, 5.9282921718, -0.9831895817, 1.1577267933 H,0,5.690739785,0.7321065746,0.7862474184 H, 0, 6.8507433607, -4.5958461931, 2.6069714118 H, 0, -2.2272586299, 7.8139758056, 0.6916805024 H, 0, 6.7816376509, 0.9849566997, -1.3221543646 H, 0, 4.1935750235, -2.8792026029, -2.9518296932 H, 0, -1.5254636263, 0.9008116358, -1.1320736703 H, 0, -2.0140515864, 2.2613758791, -2.1694931331 H, 0, 7.0129965295, 0.3144429769, -3.7373753465 H, 0, 2.8252880664, -5.6259612031, 1.3779591213 H, 0, -5.7353594658, 4.0190924807, 0.1392303125

[BBQH2][ZnCl4]2- (singlet)

5.187955000	-0.316720000	-0.745070000
3.044486000	-1.164924000	-1.120072000
6.459493000	-0.728628000	-2.637429000
6.090381000	-1.449233000	1.080342000
	5.187955000 3.044486000 6.459493000 6.090381000	5.187955000-0.3167200003.044486000-1.1649240006.459493000-0.7286280006.090381000-1.449233000

~ 7	5 000 00000	1 051510000	0 00005000
CI	5.093639000	1.951513000	-0.320205000
0	0.327090000	1.453245000	1.209456000
\cap	-3 968029000	-1 18829/000	-0 729255000
0	1.401055000	1.100294000	0.729299000
N	-1.42125/000	-2.434890000	-0.91815/000
Ν	-3.296549000	-4.419761000	-0.031821000
N	-2.242953000	2.652658000	1,497721000
11	0.007740000	4 104005000	1 20122000
IN	-0.927742000	-4.184885000	1.291228000
С	-0.676637000	0.812661000	0.819638000
С	-4.227520000	-5.214882000	0.557331000
C	-3 493011000	_3 8/8195000	-1 245499000
C	-3.495011000	-3.040195000	-1.245499000
С	-2.967542000	-0.565/34000	-0.304682000
Ν	-0.535836000	4.704590000	0.444606000
N	-3 034738000	4 359562000	-0 649435000
C	0 641426000	0 510624000	0.01910000
C	-0.541426000	-0.510634000	0.259659000
С	-2.066630000	1.431740000	0.884172000
С	1.033883000	4,453232000	2,209010000
C	-3 104632000	0 7/0037000	0 27/392000
C	-3.104032000	0.749937000	0.2/4392000
С	-4.001513000	3./93398000	0.109096000
С	-1.583048000	-1.194574000	-0.341515000
С	0.125264000	-3.623147000	0.650112000
C	0 742100000	4 697914000	2 522052000
C	-0.742100000	-4.687814000	2.552055000
С	-2.383565000	-3.015932000	-1.865338000
С	-0.209773000	4.148000000	1.637547000
С	-4.689620000	-4.104302000	-1,930747000
C	-5 421206000		_0 091100000
C	-3.431200000	-3.488885000	-0.081109000
С	-1.232611000	3.28/354000	2.358/25000
С	0.497840000	-4.661920000	3.181950000
С	1.399876000	-3.550656000	1.233152000
C	-1 679979000	1 857736000	-2 347680000
C C	1.679979000	4.057750000	2.347000000
C	1.548564000	5.85/690000	0.29/643000
С	-3.583568000	3.259960000	1.476421000
С	0.304026000	5.533897000	-0.228714000
C	-5 660287000	-4 926319000	-1 350227000
C C	E 220800000	2 727406000	0.211250000
C	-5.339890000	3./3/496000	-0.311259000
С	-3.370134000	4.873161000	-1.854299000
С	-0.123962000	-3.119184000	-0.767098000
C	-5 684501000	4 282853000	-1 555665000
C	1 014410000	E 200E24000	1 540499000
C	1.914410000	5.309534000	1.540488000
С	1.588193000	-4.082610000	2.517024000
Н	-2.340677000	-4.264764000	0.507823000
н	-3 966119000	-5 613200000	1 539240000
11	1 510010000	4 602006000	1.0002210000
п	-1.519919000	4.502885000	-0.002889000
H	0.484231000	-0.887242000	0.259296000
Н	1.301508000	4.008372000	3.170008000
н	-4 123861000	1 137198000	0 241499000
11	1.012000000	E 12(020000	2 014402000
Н	-1.621308000	-5.126929000	3.014403000
H	-1.811564000	-3.665138000	-2.552202000
Н	-2.850399000	-2.230804000	-2.474451000
н	-4 850026000	-3 647336000	-2 909913000
11	1.000020000	6 128040000	2.303313000
п	-0.1/0/06000	-0.120040000	0.403901000
H	-0.688200000	2.533113000	2.941633000
Н	-1.776030000	3.930023000	3.073667000
н	0 598037000	-5 082937000	4 185294000
 U	2 215164000	-3 066965000	0 694420000
17	2.213104000	-3.000000000	0.004420000
Н	-4.900813000	5.285283000	-3.328593000
Н	2.214362000	6.524298000	-0.252941000
Н	-3.582330000	4.093475000	2.197469000
н	-4 333331000	2 533610000	1 838265000
11		E 010142000	1 10000000
н	-0.062299000	5.918143000	-1.182002000
Н	-6.596249000	-5.123818000	-1.879655000
Н	-6.095106000	3.270427000	0.327613000

Н	-2.554355000	5.311392000	-2.437692000
Н	0.708335000	-2.462042000	-1.081492000
Н	-0.122574000	-3.980539000	-1.454800000
Н	-6.720407000	4.249857000	-1.905040000
Н	2.886441000	5.545386000	1.981551000
Н	2.571179000	-4.035486000	2.994607000

ero-point Energies=	-5259.000831
thermal Energies=	-5258.958982
thermal Enthalpies=	-5258.958038
thermal Free Energies=	-5259.085160
	zero-point Energies= thermal Energies= thermal Enthalpies= thermal Free Energies=

[BBQH2][ZnCl4]2- (triplet)

Zn,0,11.0555338478,6.9302728363,8.7545296255 Cl,0,9.9408309076,6.1063505359,6.8724746898 Cl,0,11.5489056406,9.1580948378,8.3608530218 Cl,0,13.015023087,5.730707281,9.0649629 Cl,0,9.6979320413,6.7109415073,10.6168487587 0,0,6.6726686571,3.6054139912,8.4342105131 0,0,5.8472661163,1.6397361877,3.3566015599 N,0,8.3912463138,2.9335875307,4.0205033997 N,0,9.7653723643,1.0724521502,2.2576641416 N,0,4.2579287064,2.1140532074,7.8434281094 N,0,10.25140355,0.937233322,4.8992176964 C,0,6.4717010591,3.1008067429,7.2810410606 C,0,10.5402787417,0.2500949454,1.5035061809 C,0,9.1027977419,2.1363314568,1.7296745615 C,0,6.0772267065,2.1267091199,4.5195005206 N,0,3.5001270068,4.5479471495,9.1627771318 N,0,2.1413415585,3.7780329542,6.8955831952 C,0,7.4459350225,3.2831342354,6.2295600264 C,0,5.2582260226,2.3561539526,6.9129930468 C,0,4.8704879203,4.0791869366,11.0457458131 C,0,5.1059894205,1.9578997523,5.5677168508 C,0,2.1223800279,2.4655894024,6.56503197 C,0,7.3314836005,2.7961045909,4.9032606131 C,0,10.3264127372,2.1956138093,5.3968424345 C,0,10.7589424385,-0.0848870347,5.6206205747 C,0,8.1525378749,2.94148894,2.5767736682 C,0,4.2996524042,3.6784800959,9.8286911537 C,0,9.2295808409,2.3950571989,0.3548928517 C,0,10.6701579277,0.4544421878,0.1348457582 C,0,4.4773542545,2.2702070775,9.2893598987 C,0,11.3692570394,0.1056665288,6.8674025909 C,0,10.9225300749,2.4730224084,6.6350001647 C,0,0.542526592,4.2253939487,5.1390755183 C,0,3.8023303627,6.2459008176,10.8119534621 C,0,2.9791018863,1.5284103435,7.4118770505 C,0,3.2501334168,5.8048966656,9.616082206 C,0,10.0071262635,1.5513230548,-0.4446582656 C,0,1.3209098289,1.9710119266,5.5239843568 C,0,1.370995403,4.6362924383,6.1902511963 C,0,9.735339464,3.2926117316,4.5192732336 C,0,0.5147829385,2.8640646417,4.8043224977 C,0,4.6214863413,5.3626614225,11.5398109115 C,0,11.4563782141,1.4085884141,7.3779752986 H,0,9.8048021925,0.9202944739,3.355655949 H,0,11.0431930409,-0.5564544506,2.0401147085 H,0,3.0160704206,4.2363604082,8.2283110532 H,0,8.2894972986,3.9196410575,6.517341498

H,0,5.512335622,3.3808398611,11.5873001676 H,0,4.2138217087,1.4204542122,5.2407627298 H,0,10.670689476,-1.0811803381,5.1758110334 H,0,8.1216679526,3.9820731183,2.20172323 H,0,7.1333356686,2.4978792814,2.4446192211 H,0,8.7083739589,3.2538490586,-0.0746404742 H,0,11.2877883043,-0.2212973349,-0.4591071909 H,0,5.4836223429,1.9293647139,9.5630766773 H,0,3.7532751625,1.6113733791,9.8004881506 H,0,11.7648333715,-0.7508143196,7.4186947604 H,0,10.9522543864,3.5045419411,7.001542427 H,0,-0.0610975669,4.9588214779,4.5991493022 H,0,3.5942478545,7.2571090665,11.1654254183 H,0,2.4175163471,1.2606259699,8.321537259 H,0,3.1507494941,0.5833177356,6.8665787525 H,0,2.6003190957,6.4211129698,8.9929881223 H,0,10.1022077793,1.7502042022,-1.5153859446 H,0,1.3342864596,0.9042281583,5.2821740568 H,0,1.4246849591,5.6890632469,6.4846418608 H,0,9.7115945732,4.2512730284,5.0715171289 H,0,10.3750743812,3.4573472108,3.636396882 H,0,-0.1173219052,2.5021773978,3.9883600779 H,0,5.0680162401,5.6799416718,12.485923145 H,0,11.9266820166,1.5964185588,8.3474700504

Sum of electronic and zero-point Energies=-5258.950648Sum of electronic and thermal Energies=-5258.907941Sum of electronic and thermal Enthalpies=-5258.906996Sum of electronic and thermal Free Energies=-5259.036149