Supplemental Information

Complexes of $MN_2S_2 \cdot Fe(\eta^5 - C_5R_5)(CO)$ as Platform for Exploring Cooperative Heterobimetallic Effects in HER Electrocatalysis

Pokhraj Ghosh,[#] Manuel Quiroz,[#] Ning Wang,^{#,‡} Nattamai Bhuvanesh,[#] Marcetta Y. Darensbourg^{*,#} [#]Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States

marcetta@chem.tamu.edu

Electrochemistry

Determination of Overpotential

Calculation of Turnover Frequency (TOF)

Table S1. TOF calculation of **Ni-Fe**^{*} at various concentrations of TFA at scan rate of 0.2 V/s in CH₃CN. The value of i_p was considered at the appearance of the catalytic event at -1.91 V as the first reduction event.

Table S3. TOF calculation of **Co-Fe'** at various concentrations of TFA at scan rate of 0.2 V/s in CH3CN. The value of i_p was considered at the appearance of the catalytic event at -1.12 V as the first reduction event. S7

Experimental setup for bulk electrolysis and gas chromatography

Figure S2. Charge passed (in coulombs) in 30 minutes for the bulk electrolysis of 100 mmol T acid) in CH ₃ CN at -1.80 V.	FA (free
Figure S3. Charge passed (in coulombs) in 30 minutes for the bulk electrolysis of Ni-Fe*' in p	presence of
50 equivalents of TFA in CH ₃ CN at -1.80 V.	S8
Figure S4. Charge passed (in coulombs) in 30 minutes for the bulk electrolysis of Co-Fe*' in J	presence of
50 equivalents of TFA in CH ₃ CN at -1.80 V.	S9
Figure S5. Charge passed (in coulombs) in 30 minutes for the bulk electrolysis of Co-Fe' in pr	resence of
50 equivalents of TFA in CH ₃ CN at -1.80 V.	S9

Table S4 . Charge passed (C) and Faradaic efficiency from bulk electrolysis experiments of 100 mM TFAin CH ₃ CN at -1.80 V for 30 min.S10
Table S5 . Charge passed (C) and corrected TON from bulk electrolysis experiments of 2mM Ni-Fe*' and50 equivalents of TFA in CH ₃ CN at -1.80 V for 30 min.S10
Table S6 . Charge passed (C) and corrected TON from bulk electrolysis experiments of 2mM Co-Fe*'and 50 equivalents of TFA in CH ₃ CN at -1.80 V for 30 min
Table S7 . Charge passed (C) and corrected TON from bulk electrolysis experiments of 2mM Co-Fe' and50 equivalents of TFA in CH ₃ CN at -1.80 V for 30 min.S11
Gas Chromatograms
Figure S6. Gas chromatogram from bulk electrolysis experiment 1 at -1.80 V with 100 mmol of TFA (free acid) for 30 min in CH ₃ CN
Figure S7 . Gas chromatogram from bulk electrolysis experiment 2 at -1.80 V with 100 mmol of TFA (free acid) for 30 min in CH ₃ CN
Figure S8 . Gas chromatogram from bulk electrolysis experiment 3 at -1.80 V with 100 mmol of TFA (free acid) for 30 min in CH ₃ CN
Figure S9 . Gas chromatogram from bulk electrolysis experiment 1 at -1.80 V with 2mM Ni-Fe*' and 50 equivalents of TFA for 30 min in CH ₃ CN. S13
Figure S10. Gas chromatogram from bulk electrolysis experiment 2 at -1.80 V with 2mM Ni-Fe* ' and 50 equivalents of TFA for 30 min in CH ₃ CN
Figure S11. Gas chromatogram from bulk electrolysis experiment 1 at -1.80 V with 2mM Co-Fe *' and 50 equivalents of TFA for 30 min in CH ₃ CN. S14
Figure S12. Gas chromatogram from bulk electrolysis experiment 2 at -1.80 V with 2mM Co-Fe *' and 50 equivalents of TFA for 30 min in CH ₃ CN. S15
Figure S13. Gas chromatogram from bulk electrolysis experiment 1 at -1.80 V with 2mM Co-Fe' and 50 equivalents of TFA for 30 min in CH ₃ CN. S15
Figure S14. Gas chromatogram from bulk electrolysis experiment 2 at -1.80 V with 2mM Co-Fe' and 50 equivalents of TFA for 30 min in CH ₃ CN
Scan Rates
Figure S15. The oxidation event, $Cp*Fe'^{II/III}$ ($E_{1/2} = 0.07$ V), of Ni-Fe*' , recorded at different scan rates in CH ₃ CN referenced to Fc ^{0/+}

Figure S16. The oxidation event, $Cp*Fe^{II/III}$ ($E_{1/2} = 0.12$ V), of Co-Fe*' , recorded at different scan rate	ites
in CH ₃ CN referenced to Fc ^{0/+} .	S17

Figure S17. The reduction event, $\{Co(NO)\}^{8/9}$ ($E_{1/2} = -1.19$ V), of Co-Fe*' , recorded at different scan rates in CH ₃ CN referenced to Fc ^{0/+}
Figure S18. The oxidation event, CpFe' ^{II/III} ($E_{1/2} = 0.32$ V), of Co-Fe' , recorded at different scan rates in CH ₃ CN referenced to Fc ^{0/+} .
Figure S19. The reduction event, $\{Co(NO)\}^{8/9}$ (E _{1/2} = -1.12 V), of Co-Fe' , recorded at different scan rates in CH ₃ CN referenced to Fc ^{0/+}
Infrared Spectrum
Figure S20. IR spectrum of (A) Co-Fe", (B) Co-Fe*" and (C) Ni-Fe*" in CH ₂ Cl ₂ S19
Figure S21. IR spectrum of CoFe' in CH ₂ Cl ₂
Figure S22. IR spectrum of Co-Fe*' in CH_2Cl_2 .S20
Figure S23. IR spectrum of Ni-Fe*' in CH_2Cl_2 .S20
Figure S24. IR spectrum of $[(\eta^5-C_5Me_5)Fe(CO)_3]^+$ [PF ₆] ⁻ in CH ₃ CN
Positive-ion ESI Mass Spectrum
Figure S25. Positive-ion ESI mass spectrum of Ni-Fe* " (PF ₆) in CH ₃ CN; inset: Calculated isotopic distribution for complex Ni-Fe* ". S21
Figure S26. Positive-ion ESI mass spectrum of Co-Fe* " (PF ₆) in CH ₃ CN; inset: Calculated isotopic distribution for complex Co-Fe* "
Figure S27. Positive-ion ESI mass spectrum of Co-Fe" (BF ₄) in CH ₂ Cl ₂ ; inset: Calculated isotopic distribution for complex Co-Fe". S21
NMR Spectrum
Figure S28. ¹ H NMR Spectrum of Co-Fe " at 23.2 °C using a 500 MHz NMR under N ₂ referenced to residual CH ₂ Cl ₂ .
Figure S29. ¹³ C NMR Spectrum of Co-Fe " at 23.2 °C using a 500 MHz NMR under N ₂ referenced to residual CH ₂ Cl ₂
Figure S30. ¹ H NMR Spectrum of Ni-Fe*' at 23.2 °C using a 500 MHz NMR under N ₂ referenced to residual CH ₂ Cl ₂
Figure S31. ¹³ C NMR Spectrum of Ni-Fe *' at 23.2 °C using a 500 MHz NMR under N ₂ referenced to residual CH ₂ Cl ₂
Figure S32. ¹ H NMR Spectrum of Co-Fe [*] , at 23.2 °C using a 500 MHz NMR under N ₂ referenced to residual CH ₂ Cl ₂

Figure S33. ¹³ C NMR Spectrum of Co-Fe *' at 23.2 °C using a 500 MHz NI residual CH ₂ Cl ₂ .	MR under N ₂ referenced to
Figure S34. ¹ H NMR Spectrum of Co-Fe' at 22.0 °C using a 500 MHz NM residual CH ₂ Cl ₂ .	R under N ₂ referenced to
Figure S35. ¹³ C NMR Spectrum of Co-Fe' at 22.0 °C using a 500 MHz NM residual CH ₂ Cl ₂ .	IR under N ₂ referenced to

Crystal Structures

Figure S36. Thermal ellipsoid at 50 % probability for Co-Fe"	. S30
Table S8. Crystal data and structure refinement for Co-Fe".	S 31
Figure S37. Thermal ellipsoid at 50 % probability for Co-Fe'.	. S32
Fable S9. Crystal data and structure refinement for Co-Fe'.	. S33
Figure S38. Thermal ellipsoid at 50 % probability for Co-Fe*'.	. S34
Fable S10. Crystal data and structure refinement for Co-Fe*'.	. S35
Figure S39. Thermal ellipsoid at 50 % probability for Ni-Fe*'.	S36
Fable S11. Crystal data and structure refinement for Ni-Fe*'.	. S37

References	 S38

Electrochemistry:

(i) Determination of Overpotential:

The overpotential for the complexes Ni-Fe*', Co-Fe*' and Co-Fe' were determined by the method determined by Appel and Helm.¹ Overpotential is defined as the difference between the thermodynamic potential (E_{H+}) and the catalytic half wave potential ($E_{cat/2}$). The value of E_{H+} is +0.65 V (vs Fc^{0/+} = 0.0 V) in 100 mM trifluoroacetic acid (TFA) in CH₃CN solvent. The potential where the catalytic current (i_{cat}) corresponds to half of its value is defined as the catalytic half wave potential ($E_{cat/2}$). A representative example for the CoFe*' complex is shown in Figure S1.

Figure S1. Overalay of cyclic voltammograms of **Co-Fe**^{*} (red trace), **Co-Fe**^{*} with 50 equivalents of TFA (blue trace) and 50 equivalents of TFA without catalyst (olive trace). Graphical representation for the calculation of $E_{cat/2}$, net catalytic current (i_{cat} - i_{TFA}) and overpotential is also illustrated.

(ii) Calculation of Turnover Frequency (TOF):

TOF frequency was calculated according to the modified equation as published by the Darensbourg group.^{2,3} The general form of the equation that uses i_{cat} (Eq. 1) was modified to compensate for the background acid contribution by subtracting the i_{TFA} (Eq 2). The pictorial representation for the corrected catalytic contribution is shown in Figure S1.

TOF = 1.94 (V⁻¹) x v (Vs⁻¹) x
$$[i_{cat}/i_p]^2$$
 (Eq. 1)

TOF =	$(V^{-1}) \ge v (V^{-1}) \ge (i_{cat} - i_{TFA})/i_p]^2$	(Eq. 2)
v	= scan rate	
$i_{\rm cat}$	= total current measured upon adding acid (TFA) to the catalyst
$i_{ m TFA}$	= background current measured from the acid (ΓFA) at the potential of i_{cat}
<i>i</i> p	= current measured from the catalyst in absence	of acid
i_{cat} - i_{TFA}	A = corrected current response from the catalyst o	nly.

The concentration of the acid was sequentially increased until the TOF was fairly constant as shown in Tables S1, S2 and S3 for the complexes Ni-Fe*', Co-Fe*' and Co-Fe', respectively.

Table S1. TOF calculation of **Ni-Fe**^{*} at various concentrations of TFA at scan rate of 0.2 V/s in CH₃CN. The value of i_p was considered at the appearance of the catalytic event at -1.91 V as the first reduction event.

Acid (µL)	i _{cat} (mA)	i _{TFA} (mA)	i _{cat} -i _{TFA} (mA)	TOF (s ⁻¹)
0	0.072	0.000	0.072	0.000
50	0.991	0.664	0.326	7.99
100	1.849	1.247	0.602	27.12
150	2.288	1.677	0.611	27.94
200	2.600	1.943	0.657	32.31

Table S2. TOF calculation of **Co-Fe**^{*} at various concentrations of TFA at scan rate of 0.2 V/s in CH₃CN. The value of i_p was considered at the appearance of the catalytic event at -1.19 V as the first reduction event.

Acid (µL)	i _{cat} (mA)	i _{TFA} (mA)	i_{cat} - i_{TFA} (mA)	TOF (s ⁻¹)
0	0.053	0.000	0.053	0.000
50	1.184	0.665	0.518	36.56
100	1.907	1.218	0.689	64.69
150	2.299	1.608	0.691	65.06

Table S3. TOF calculation of **Co-Fe'** at various concentrations of TFA at scan rate of 0.2 V/s in CH3CN. The value of i_p was considered at the appearance of the catalytic event at -1.12 V as the first reduction event.

Acid (µL)	i _{cat} (mA)	i _{TFA} (mA)	i _{cat} -i _{TFA} (mA)	TOF (s ⁻¹)
0	0.056	0.000	0.056	0.00
50	1.007	0.454	0.553	37.91
100	1.539	0.848	0.690	59.23
150	1.897	1.125	0.772	74.08
200	2.105	1.307	0.076	79.15

(iii) Experimental setup for bulk electrolysis and gas chromatography:

Custom made three-neck truncated conical shaped flaks with an outlet port/gas inlet was the apparatus used for bulk electrolysis experiments. A Ni-Cr-coiled wire counter electrode, a Ag/AgNO₃ reference electrode, and a 3 mm glassy carbon working electrode were placed in the necks of the cell. The Ni-Cr-coiled wire placed in a glass tube with a medium glass frit served as the counter electrode. A glass tube containing a Ag wire immersed in a 1 mM solutions of AgNO₃ in CH₃CN separated from the main solution by a Vycor frit was the contents of the reference electrode. To the electrochemical cell 10 ml of 0.1 M [n-Bu₄N][PF₆] in MeCN was added and then purged with Ar to remove all O₂. To the cell 2x10⁻⁵ mol of the appropriate catalyst and 50 equivalents of trifluoroacetic acid were added. To ensure that the experiment was under catalytic conditions, a cyclic voltammogram was recorded. After 30 minutes of bulk electrolysis performed at -1.80 V vs Fc/Fc⁺, 1 mL of methane was added as the internal standard.

An Agilent Trace 1300 GC attached with a thermal conductivity detector and a custom-made 120 cm stainless steel coloumn packed with Carbosieve-II was used to identify gases. The column was kept at a temperature of 200 °C and Ar was used to carry the gas during the separation. The detector was set to a temperature of 250 °C. Approximately 200 μ L are withdrawn from the headspace gas after bulk electrolysis to quantify H₂ production. The syringe used was a 0.5 mL Valco Precision Sampling Syringe (Series A-2) equipped with a Valco Precision sampling needle with a 5 point side port. By determining the relative response factor of H₂ and the internal standard, H₂ can be quantified. A calibration curve was

$$\frac{\text{are of } H_2}{\frac{1}{1}} vs \frac{mL of H_2}{\frac{1}{1}}$$

used that plotted area of CH_4 mL of CH_4 . It was calculated previously in our lab by recording the gas chromatograms of different amounts of H₂ vs 1 mL of methane. The calibration curve had the linear equation of y = 2.9757x + 0.0226 with R² value of 0.9987.³

Three bulk electrolysis experiments at -1.80 V in CH₃CN were carried out with 100 mmol of TFA, in absence of catalyst. The average charge passed and faradic efficiency over three experiments was $2.16 \pm$

0.03 C and 95.58% \pm 0.91% respectively. The charge passed vs time plots and gas chromatograms are shown in Figures S2 and S6-S8 and the results are tabulated in Table S4. The background H₂ produced from TFA was accounted for by subtracting the former from the total H₂ produced from the bulk electrolysis experiments with 2 mM catalyst and 50 equivalents of TFA. The gas chromatograms from the bulk electrolysis experiments with the catalysts are shown in Figure S9-S14. We posit that the peak at ca. 2.3 min in the gas chromatograms is due to N₂/O₂ from the atmosphere that contaminated the needle of the gas-tight syringe prior to the insertion of the head space gas into the gas chromatograph. The faradic efficiency and the corrected TON are tabulated in tables S5-S7.

Figure S2. Charge passed (in coulombs) in 30 minutes for the bulk electrolysis of 100 mmol TFA (free acid) in CH₃CN at -1.80 V.

Figure S3. Charge passed (in coulombs) in 30 minutes for the bulk electrolysis of **Ni-Fe***' in presence of 50 equivalents of TFA in CH₃CN at -1.80 V.

Figure S4. Charge passed (in coulombs) in 30 minutes for the bulk electrolysis of **Co-Fe***' in presence of 50 equivalents of TFA in CH₃CN at -1.80 V.

Figure S5. Charge passed (in coulombs) in 30 minutes for the bulk electrolysis of **Co-Fe'** in presence of 50 equivalents of TFA in CH_3CN at -1.80 V.

Table S4. Charge passed (C) and Faradaic efficiency from bulk electrolysis experiments of 100 mM TFA in CH₃CN at -1.80 V for 30 min.

Exp.	Coulombs	Area of	Area of	Ratio:	Theoretical	Observed	Faradaic
	passed (C)	H_2	CH ₄	Area _{H2} /Area _{CH4}	H ₂ (mL)	H ₂ (mL)	Efficiency (%)
1	2.147	0.251	0.318	0.789	0.273	0.257	94.55
2	2.197	0.253	0.308	0.822	0.279	0.269	96.29
3	2.151	0.237	0.296	0.802	0.273	0.262	95.88

Average Coulombs passed = 2.165 ± 0.03

Theoretical H_2 (mL) = (((Coulombs passed/96500)/2)*24.5)*1000

Observed H_2 (mL) = (Ratio-0.0226)/2.9757

Faradaic Efficiency = $[Observed H_2/Theoretical H_2]*100$

Table S5. Charge passed (C) and corrected TON from bulk electrolysis experiments of 2mM Ni-Fe*' and 50 equivalents of TFA in CH₃CN at -1.80 V for 30 min.

Experiment	Charge Passed (C)	Corrected Charge Passed (C)	Faradaic Efficency (%)	TON	Corrected TON
1	3.55	1.38	85.40	0.91	0.35
2	3.26	1.09	91.06	0.85	0.29
Average	3.40 ± 0.20	1.24 ± 0.20	88.23 ± 4.00	0.88 ± 0.05	0.32 ± 0.05

Faradaic Efficiency was calculated in the same way as that of the free acid TFA. TON = (Coulombs passed/(Amount of cat (in mmol)*(0.00001)*96500*2) Corrected Coulombs (C) = Coulombs passed - Average Coulombs passed for TFA only

Corrected TON = (Corrected Coulombs passed/(Amount of cat (in mmol)*(0.00001)*96500*2)

and	50 equivalents	of IFA in CH	$_{3}$ CN at -1.80 V for 30	min.		
	Experiment	Charge passed (C)	Corrected Charge passed (C)	Faradaic Efficency (%)	TON	Corrected TON

0.62

0.56

 0.59 ± 0.04

1

2

Average

2.78

2.72

 2.75 ± 0.04

99.38

99.15

 99.27 ± 0.16

0.16

0.14

 0.15 ± 0.01

0.72

0.70

 0.71 ± 0.01

Table S6. Charge passed (C) and corrected TON from bulk electrolysis experiments of 2mM **Co-Fe***' and 50 equivalents of TFA in CH₃CN at -1.80 V for 30 min.

Table S7. Charge passed (C) and corrected TON from bulk electrolysis experiments of 2mM **Co-Fe'** and 50 equivalents of TFA in CH₃CN at -1.80 V for 30 min.

Experiment	Charge passed (C)	Corrected Charge passed (C)	Faradaic Efficency (%)	TON	Corrected TON
1	3.66	1.49	93.55	0.95	0.32
2	3.38	1.22	92.00	0.88	0.38
Average	3.52 ± 0.20	1.36 ± 0.20	92.76 ± 1.10	0.91 ± 0.05	0.35 ± 0.05

Gas Chromatograms:

Figure S6. Gas chromatogram from bulk electrolysis experiment 1 at -1.80 V with 100 mmol of TFA (free acid) for 30 min in CH_3CN .

Figure S7. Gas chromatogram from bulk electrolysis experiment 2 at -1.80 V with 100 mmol of TFA (free acid) for 30 min in CH_3CN .

Figure S8. Gas chromatogram from bulk electrolysis experiment 3 at -1.80 V with 100 mmol of TFA (free acid) for 30 min in CH₃CN.

Figure S9. Gas chromatogram from bulk electrolysis experiment 1 at -1.80 V with 2mM **Ni-Fe***' and 50 equivalents of TFA for 30 min in CH₃CN.

Figure S10. Gas chromatogram from bulk electrolysis experiment 2 at -1.80 V with 2mM Ni-Fe*' and 50 equivalents of TFA for 30 min in CH₃CN.

Figure S11. Gas chromatogram from bulk electrolysis experiment 1 at -1.80 V with 2mM **Co-Fe***' and 50 equivalents of TFA for 30 min in CH₃CN.

Figure S12. Gas chromatogram from bulk electrolysis experiment 2 at -1.80 V with 2mM **Co-Fe***' and 50 equivalents of TFA for 30 min in CH₃CN.

Figure S13. Gas chromatogram from bulk electrolysis experiment 1 at -1.80 V with 2mM **Co-Fe'** and 50 equivalents of TFA for 30 min in CH₃CN.

Figure S14. Gas chromatogram from bulk electrolysis experiment 2 at -1.80 V with 2mM **Co-Fe'** and 50 equivalents of TFA for 30 min in CH₃CN.

Scan Rates:

Figure S15. The oxidation event, Cp*Fe'^{11/111} ($E_{1/2} = 0.07$ V), of **Ni-Fe***', recorded at different scan rates in CH₃CN referenced to Fc^{0/+}.

Figure S16. The oxidation event, $Cp*Fe'^{II/III}$ ($E_{1/2} = 0.12$ V), of **Co-Fe*'**, recorded at different scan rates in CH₃CN referenced to Fc^{0/+}.

Figure S17. The reduction event, $\{Co(NO)\}^{8/9}$ ($E_{1/2} = -1.19$ V), of **Co-Fe*'**, recorded at different scan rates in CH₃CN referenced to Fc^{0/+}.

Figure S18. The oxidation event, CpFe'^{II/III} ($E_{1/2} = 0.32$ V), of **Co-Fe'**, recorded at different scan rates in CH₃CN referenced to Fc^{0/+}.

Figure S19. The reduction event, $\{Co(NO)\}^{8/9}$ ($E_{1/2} = -1.12$ V), of **Co-Fe'**, recorded at different scan rates in CH₃CN referenced to Fc^{0/+}.

IR Spectrum:

Figure S20. IR spectrum of (A) **Co-Fe**", (B) **Co-Fe**^{*}", (C) **Ni-Fe**^{*}" in CH₂Cl₂. Note for **Co-Fe**^{*}" and **Ni-Fe**^{*}" the peaks of the product are shown by arrow.

Figure S21. IR spectrum of Co-Fe' in CH₂Cl₂.

Figure S22. IR spectrum of Co-Fe*' in CH₂Cl₂.

Figure S23. IR spectrum of Ni-Fe*' in CH₂Cl₂.

Figure S24. IR spectrum of $[(\eta^5-C_5Me_5)Fe(CO)_3]^+$ [PF₆]⁻ in CH₃CN.

Positive-ion ESI Mass Spectrum:

Figure S25. Positive-ion ESI mass spectrum of **Ni-Fe***" (**PF**₆) in CH₃CN; inset: Calculated isotopic distribution for complex **Ni-Fe***".

Figure S26. Positive-ion ESI mass spectrum of **Co-Fe**^{*}" (**PF**₆) in CH₃CN; inset: Calculated isotopic distribution for complex **Co-Fe**^{*}".

Figure S27. Positive-ion ESI mass spectrum of **Co-Fe**" (**BF**₄) in CH₂Cl₂; inset: Calculated isotopic distribution for complex **Co-Fe**".

Figure S28. ¹H NMR Spectrum of **Co-Fe**" at 23.2 °C using a 500 MHz NMR under N_2 referenced to residual CH_2Cl_2 .

Figure S29. ¹³C NMR Spectrum of **Co-Fe**" at 23.2 °C using a 500 MHz NMR under N₂ referenced to residual CH₂Cl₂.

Figure S30. ¹H NMR Spectrum of Ni-Fe^{*} at 23.2 °C using a 500 MHz NMR under N_2 referenced to residual CH_2Cl_2 .

Figure S31. ¹³C NMR Spectrum of **Ni-Fe***' at 23.2 °C using a 500 MHz NMR under N₂ referenced to residual CH₂Cl₂.

Figure S32. ¹H NMR Spectrum of **Co-Fe***' at 23.2 °C using a 500 MHz NMR under N₂ referenced to residual CH₂Cl₂.

Figure S33. ¹³C NMR Spectrum of **Co-Fe***' at 23.2 °C using a 500 MHz NMR under N₂ referenced to residual CH₂Cl₂.

Desktop STANDARD 1H OBSERVE - profile

Figure S34. ¹H NMR Spectrum of **Co-Fe'** at 22.0 °C using a 500 MHz NMR under N₂ referenced to residual CH₂Cl₂.

Note: the integration of the 5 H's in the Cp ring does not match. This may be due to the difference in relaxation of the protons bound to the Cp ring compared to the protons on the N_2S_2 ring. The peaks between 1 and 1.75 ppm are residual grease and H_2O from NMR solvent.

Figure S35. ¹³C NMR Spectrum of Co-Fe' at 22.0 °C using a 500 MHz NMR under N_2 referenced to residual CH_2Cl_2 .

Figure S36. Thermal ellipsoid at 50 % probability for Co-Fe".

Identification code	cofe2co	
Empirical formula	C17 H25 B Cl2 Co F4 Fe N3 O3 S2	
Formula weight	656.01	
Temperature	150.15 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.592(2) Å α = 73.506(3)°.	
b = 12.668(3) Å	β= 75.942(3)°.	
c = 13.662(4) Å	$\gamma = 83.232(3)^{\circ}.$	
Volume	1220.5(6) Å ³	
Ζ	2	
Density (calculated)	1.785 Mg/m ³	
Absorption coefficient	1.721 mm ⁻¹	
F(000)	664	
Crystal size	0.3 x 0.18 x 0.04 mm ³	
Theta range for data collection	1.594 to 27.530°.	
Index ranges	-9<=h<=9, -16<=k<=15, -17<=l<=17	
Reflections collected	10561	
Independent reflections	5441 [R(int) = 0.0269]	
Completeness to theta = 25.242°	99.3 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.5325	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5441 / 68 / 326	
Goodness-of-fit on F ²	1.040	
Final R indices [I>2sigma(I)]	R1 = 0.0348, $wR2 = 0.0822$	
R indices (all data) $R1 = 0.0498, wR2 = 0.0899$		
Extinction coefficient n/a		
Largest diff. peak and hole	0.637 and -0.623 e.Å ⁻³	

Table S8. Crystal data and structure refinement for Co-Fe"

Figure S37. Thermal ellipsoid at 50 % probability for Co-Fe'.

Table S9. Crystal data and structure refinement for Co-Fe'.

Identification code	cpfeco
Empirical formula	C15.38 H23.75 B Cl0.75 Co F4 Fe N3 O2 S2
Formula weight	575.11
Temperature	150.15 K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	F d d 2
Unit cell dimensions	$a = 24.029(4) \text{ Å}$ $\alpha = 90^{\circ}.$
b = 29.365(5) Å	β= 90°.
c = 12.6042(17) Å	$\gamma = 90^{\circ}$.
Volume	8894(2) Å ³
Ζ	16
Density (calculated)	1.718 Mg/m ³
Absorption coefficient	1.728 mm ⁻¹
F(000)	4669
Crystal size	0.38 x 0.32 x 0.25 mm ³
Theta range for data collection	1.952 to 28.405°.
Index ranges	-32<=h<=32, -38<=k<=39, -16<=l<=16
Reflections collected	27172
Independent reflections	5557 [R(int) = 0.0314]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7457 and 0.5961
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5557 / 2 / 278
Goodness-of-fit on F ²	1.065
Final R indices [I>2sigma(I)]	R1 = 0.0344, $wR2 = 0.0969$
R indices (all data)	R1 = 0.0372, $wR2 = 0.0987$
Absolute structure parameter	0.019(5)
Extinction coefficient	n/a
Largest diff. peak and hole	1.117 and -0.531 e.Å ⁻³

Figure S38. Thermal ellipsoid at 50 % probability for Co-Fe*'.

Identification code	comcp	
Empirical formula	C20 H33 Co F6 Fe N3 O2 P S2	
Formula weight	671.36	
Temperature	110.0 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 1 2/c 1	
Unit cell dimensions	$a = 22.3067(9) \text{ Å}$ $\alpha = 90^{\circ}.$	
b = 21.8234(9) Å	$\beta = 101.649(2)^{\circ}.$	
c = 10.8799(6) Å	$\gamma = 90^{\circ}$.	
Volume	5187.3(4) Å ³	
Ζ	8	
Density (calculated)	1.719 Mg/m ³	
Absorption coefficient	1.489 mm ⁻¹	
F(000)	2752	
Crystal size	0.125 x 0.12 x 0.082 mm ³	
Theta range for data collection	2.162 to 24.998°.	
Index ranges	-26<=h<=26, -25<=k<=25, -12<=l<=12	
Reflections collected	227516	
Independent reflections	4560 [R(int) = 0.1066]	
Completeness to theta = 24.998°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7352 and 0.6634	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4560 / 36 / 332	
Goodness-of-fit on F ²	1.172	
Final R indices [I>2sigma(I)]	R1 = 0.0433, $wR2 = 0.0756$	
R indices (all data)	R1 = 0.0533, $wR2 = 0.0801$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.445 and -0.544 e.Å ⁻³	

Table S10. Crystal data and structure refinement for Co-Fe*'.

Figure S39. Thermal ellipsoid at 50 % probability for Ni-Fe*'.

Table S11. Crystal data and structure refinement for Ni-Fe*'.

Identification code	nifecpstar
Empirical formula	C20 H33 F6 Fe N2 Ni O P S2
Formula weight	641.13
Temperature	100.0 K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	$a = 12.6068(4) \text{ Å}$ $\alpha = 90^{\circ}.$
	$b = 14.4727(4) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 27.5824(8) \text{ Å}$ $\gamma = 90^{\circ}.$
Volume	5032.5(3) Å ³
Z	8
Density (calculated)	1.692 Mg/m ³
Absorption coefficient	8.272 mm ⁻¹
F(000)	2640
Crystal size	0.221 x 0.056 x 0.019 mm ³
Theta range for data collection	3.204 to 70.215°.
Index ranges	-15<=h<=15, -16<=k<=17, -33<=l<=33
Reflections collected	64827
Independent reflections	4777 [R(int) = 0.0846]
Completeness to theta = 67.679°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7533 and 0.5155
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4777 / 1231 / 488
Goodness-of-fit on F ²	1.041
Final R indices [I>2sigma(I)]	R1 = 0.0638, $wR2 = 0.1507$
R indices (all data)	R1 = 0.0738, $wR2 = 0.1583$
Extinction coefficient	n/a
Largest diff. peak and hole	1.237 and -0.810 e.Å ⁻³

References:

- 1. A. M. Appel and M. L. Helm, ACS Catal., 2014, 4, 630.
- 2. S. Wiese, U. J. Kilgore, M. –H. Ho, S. Raugei, D. L. DuBois, R. M. Bullock and M. L. Helm, ACS Catal., 2013, 3, 2527.
- 3. S. Ding, P. Ghosh, A. M. Lunsford, N. Wang, N. Bhuvanesh, M. B. Hall and M. Y. Darensbourg, *J. Am. Chem. Soc.*, 2016, **138**, 12920–12927.