Supporting Information

(20 pages including the cover page)

Inter-Ligand Electronic Coupling Mediated Through Dimetal Bridge: Dependence on Metal Ions and Ancillary Ligands

Moumita Majumdar, Sayantani Saha, Indranil Dutta, Arup Sinha and Jitendra. K. Bera*

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India E-mail: jbera@iitk.ac.in

Contents

Page No.
Experimental Section S2-S9
X-Ray Data Collection and Refinement S9-S12
Table S8. Chemical shift values for H_{a} protons S12
Figure S1. Cyclic voltammetry of (a) L^{1} and (b) L^{2} S13
Figure S2. Cyclic voltammetry of 6A S13
Figure S3-S11. UV-Visible absorption spectra of 1, 2, 3, 3A, 4, 5, 5A, 6, 6A S13-S16
Figure S12. UV-vis changes monitored (with time) at four potentials for $\mathbf{3 A}$ S17
Figure S13. EPR spectrum for $\mathbf{1}$ in $\mathrm{CH}_{3} \mathrm{CN}$ S17
Scheme S10. Interaction between metal and the acetate orbitals S18
Theoretical Study S18
References S18-S20

Experimental Section

General Procedures. All reactions with metal complexes were carried out under an atmosphere of purified nitrogen using standard Schlenk-vessel and vacuum line techniques. Glasswares were flame-dried under vacuum. The crystallized compounds were powdered, washed several times with dry petroleum ether, and dried in vacuum for at least 48 h prior to elemental analyses. NMR spectra were obtained on JEOL JNM-LA 500 MHz spectrometer. ${ }^{1} \mathrm{H}$ NMR chemical shifts were referenced to the residual hydrogen signal of the deuterated solvents. The chemical shift is given as dimensionless δ values and the frequency is referenced relative to TMS for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. Elemental analyses were performed on a Thermoquest EA1110 CHNS/O analyzer. Infrared spectra were recorded in the range 4000$400 \mathrm{~cm}^{-1}$ on a Vertex 70 Bruker spectrophotometer on KBr pellets. ESI-MS were recorded on a Waters Micromass Quattro Micro triple-quadrupole mass spectrometer. ESI-MS of compounds were recorded in acetonitrile. Cyclic voltammetric studies were performed on a BAS Epsilon electrochemical workstation in acetonitrile with 0.1 M tetra- n-butylammonium hexafluorophosphate $\left(\mathrm{TBAPF}_{6}\right)$ as the supporting electrolyte. The working electrodes were BAS Pt disk electrode and glassy carbon electrode, the reference electrode was $\mathrm{Ag} / \mathrm{AgCl}$ and the auxiliary electrode was a Pt wire. The ferrocene/ferrocenium couple occurs at $\mathrm{E}_{1 / 2}=$ +0.51 (70) V versus $\mathrm{Ag} / \mathrm{AgCl}$ under the same experimental conditions. The potentials are reported in volts (V); the $\Delta \mathrm{E}\left(\mathrm{E}_{\mathrm{p}, \mathrm{a}}-\mathrm{E}_{\mathrm{p}, \mathrm{c}}\right)$ values are in millivolts (mV) at a scan rate of 100 mVs^{-1}. A platinum wire-gauze working electrode was used in coulometric experiments. Optically transparent Pt gauze electrode was used as working electrode. Pt wire was used as counter electrode and $\mathrm{Ag} / \mathrm{AgCl}$ as reference electrode. Electronic absorptions were measured on a Lambda-20 Perkin-Elmer spectrophotometer. Ultraviolet-visible spectroelectrochemical experiments were performed using Thin Layer Quartz Crystal Spectroelectrochemical cell. The quartz cuvette has 1 cm path length. UV-vis absorption scans were recorded on an Ocean Optics USB4000 (BASi, USA) UV-vis spectrometer in dry acetonitrile. EPR spectra were recorded on a Bruker EMX X-band spectrometer at 120 K .

Materials. All manipulations were carried out under an inert atmosphere with the use of standard Schlenk-line techniques. Glass wares were flame-dried under vacuum prior to use. Solvents were dried by conventional methods, distilled over nitrogen and deoxygenated prior to use. The reagents $\mathrm{Mo}(\mathrm{CO})_{6}, \mathrm{HBF}_{4}$ ($51-57 \%$ in diethyl ether), $\mathrm{Et}_{3} \mathrm{OBF}_{4}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and Cu metal were purchased from Aldrich. $\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(39 \% \mathrm{Ru})$ and $\mathrm{RhCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(40 \%$

Rh) were purchased from Arora Matheys, Kolkata. Trifluoromethane sulphonic acid was purchased from Spectrochem, India and $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was purchased from SD FineChem Limited, India. The starting materials $\left[\mathrm{Mo}_{2}(\mathrm{OAc})_{4}\right],{ }^{1}$ cis$\left[\mathrm{Mo}_{2}(\mathrm{OAc})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2},{ }^{2} \quad\left[\mathrm{Mo}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{10}\right]\left[\mathrm{BF}_{4}\right]_{4},{ }^{3} \quad \mathrm{Ru}_{2}(\mathrm{OAc})_{4} \mathrm{Cl},{ }^{4}$ $\left[\mathrm{Ru}_{2}(\mathrm{CO})_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right][\mathrm{OTf}]_{2},{ }^{5} \quad\left[\mathrm{Rh}_{2}(\mathrm{OAc})_{4}\right],{ }^{6} \quad\left[\mathrm{Rh}_{2}(\mathrm{OAc})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2},{ }^{7}$ $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{ClO}_{4}\right]^{8}$ were synthesized according to the literature procedures. The ligands 2-(2-pyrazinyl)-1,8-naphthyridine (L^{1}) and 2-(2-thiazolyl)-1,8-Naphthyridine (L^{2}) were prepared by the Friedlander condensation of 2-aminonicotinaldehyde with corresponding acyl derivatives. ${ }^{9}$

Synthesis and Characterization

Synthesis of \mathbf{L}^{1}. A stirred solution of 2-acetylpyrazine ($520 \mathrm{mg}, 4.26 \mathrm{mmol}$) and 2aminonicotinaldehyde ($500 \mathrm{mg}, 4.10 \mathrm{mmol}$) was heated to $60^{\circ} \mathrm{C}$. Methanolic $\mathrm{KOH}(560 \mathrm{mg}$, 10 mmol) solution was added to the reaction mixture and it was refluxed overnight. The solvent was evaporated under reduced pressure. The crude solid was purified by column chromatography (silica gel, EtOAc/Hexane: 40/60) to afford white solid. Yield: 724 mg (85%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 292 \mathrm{~K}$): $10.05(\mathrm{~s}, 1 \mathrm{H}), 9.18$ (q, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.66$8.68(\mathrm{~m}, 3 \mathrm{H}), 8.36(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{dd}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{~J}=1.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{q}, \mathrm{J}=4.55$ $\mathrm{Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 292 \mathrm{~K}$): 157.5, 155.7, 154.3, 150.4, 145.3, 144.7, 143.5, 138.3, 137.0, 122.2, 122.6, 120.0. ESI-MS, m/z: 209.0822, $[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4}$: C, 69.22; H, 3.87; N, 26.91. Found: C, 70.10; H, 3.68; N, 27.40.

Synthesis of \mathbf{L}^{2}. The reaction of 2-acetylthiazole ($541 \mathrm{mg}, 4.26 \mathrm{mmol}$), 2aminonicotinaldehyde ($500 \mathrm{mg}, 4.10 \mathrm{mmol}$) and methanolic KOH ($560 \mathrm{mg}, 10 \mathrm{mmol}$) solution was carried out following a similar procedure described for the synthesis of L^{1}. The crude solid was purified by column chromatography (silica gel, EtOAc/Hexane: 40/60) to afford whitish pink solid. Yield: $715 \mathrm{mg}(82 \%)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 292 \mathrm{~K}$): 9.13 (q, $\mathrm{J}=2 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{dd}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{~J}=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=2.85 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{q}, \mathrm{J}=4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 292 \mathrm{~K}$): 168.8, 155.6, 154.3, 154.2, 144.3, 138.2, 136.9, 123.3, 122.4, 118.9. ESI-MS, m/z: 214.0415, [M + H] ${ }^{+}$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4}: \mathrm{C}, 61.95$; H, 3.31; N, 19.70. Found: C, 62.15; H, 3.15; N, 20.40.

Synthesis of $\boldsymbol{c i s}-\left[\mathbf{M o}_{2} \mathbf{L}^{\mathbf{1}} \mathbf{2} \mathbf{(\mathbf { O A c }) _ { 2 }] [\mathbf { B F } _ { 4 }] _ { \mathbf { 2 } } \mathbf { (1) } \text { . Ligand } \mathrm { L } ^ { 1 } (5 0 \mathrm { mg } , 0 . 2 4 \mathrm { mmol }) \text { was added to an } , ~}\right.$ acetonitrile solution $(15 \mathrm{~mL})$ of $\left[\mathrm{Mo}_{2}(\mathrm{OAc})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}(88 \mathrm{mg}, 0.12 \mathrm{mmol})$. The mixture was stirred for 8 h which resulted a color change from light pink to dark green. After the completion of the reaction, the solution was concentrated under vacuum and 15 mL of toluene was added with stirring to induce precipitation. The resulting solid residue was washed with diethyl ether ($3 \times 10 \mathrm{~mL}$) and dried in vacuum. X-ray quality crystals were grown by layering diethyl ether onto a saturated acetonitrile solution of $\mathbf{1}$ inside an 8 mm o.d. vacuum-sealed glass tube. Yield: $92 \mathrm{mg}(85 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d ${ }_{6}, 292 \mathrm{~K}$): δ 9.72 ($\mathrm{s}, 2 \mathrm{H}$), $9.14(\mathrm{q}, \mathrm{J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.80(\mathrm{~d}, \mathrm{~J}=13.75 \mathrm{~Hz}, 4 \mathrm{H}), 8.67(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $8.57(\mathrm{~m}, 4 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{br}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $\mathrm{d}_{6}, 292 \mathrm{~K}$): δ $172.5,157.3,154.9,154.6,150.2,146.4,144.8,143.9,140.1,138.9,123.7,120.1,24.3,21.6$. ESI-MS, m/z: 362.9909, $\left[\mathrm{M}-2 \mathrm{BF}_{4}\right]^{2+}$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v\left(\mathrm{OAc}^{-}\right) ; 1605,1436, v\left(\mathrm{BF}_{4}^{-}\right)$; 1052. UV-Vis $\left[\mathrm{CH}_{3} \mathrm{CN} ; \lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]: 241\left(6.90 \times 10^{4}\right), 285\left(4.83 \times 10^{4}\right)$, $296\left(4.81 \times 10^{4}\right), 318\left(6.62 \times 10^{4}\right), 330\left(6.65 \times 10^{4}\right), 355(\mathrm{sh}), 455\left(0.52 \times 10^{4}\right)$. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Mo}_{2}$: C, 37.37; H, 2.46; N, 12.45. Found: C, 36.83; H, 2.54; N, 12.47.

Scheme S1 Synthesis of compound 1.
Synthesis of cis-[$\left.\mathbf{M o}_{2} \mathbf{L}^{\mathbf{1}} \mathbf{2}_{\mathbf{2}}\left(\mathbf{C H}_{\mathbf{3}} \mathbf{C N}\right)_{4}\right]\left[\mathbf{B F}_{4}\right]_{\mathbf{4}}$ (2). The reaction of ligand $\mathrm{L}^{1}(50 \mathrm{mg}, 0.24$ $\mathrm{mmol})$ and $\left[\mathrm{Mo}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{10}\right]\left[\mathrm{BF}_{4}\right]_{4}(114 \mathrm{mg}, 0.12 \mathrm{mmol})$ was carried out following a similar procedure described for the synthesis of complex $\mathbf{1}$. The color of the solution changed from pink to dark green upon addition of L^{1}. To obtain pure crystalline compound, 10 mL of diethyl ether was layered onto a saturated acetonitrile solution of $\mathbf{2}$ in a schlenk tube. Yield: $112 \mathrm{mg}(84 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}^{2}-\mathrm{d}_{6}, 292 \mathrm{~K}$): $\delta 9.72(\mathrm{~s}, 2 \mathrm{H}), 9.21(\mathrm{~s}, 2 \mathrm{H}), 8.82(\mathrm{~d}$, $\mathrm{J}=11.45 \mathrm{~Hz}, 4 \mathrm{H}), 8.72(\mathrm{~m}, 4 \mathrm{H}), 8.64(\mathrm{~d}, \mathrm{~J}=9.15 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{dd}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{~J}=3.6 \mathrm{~Hz}$, 2H), $2.46(\mathrm{~s}, 6 \mathrm{H}), 2.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 292 \mathrm{~K}$): $\delta 172.5,157.9$, 153.6, 149.9, 146.6, 144.9, 143.9, 140.9, 140.2, 123.8, 120.8, 118.6, 21.6. ESI-MS, m/z: 362.9979, $\left[\mathrm{M}-3 \mathrm{CH}_{3} \mathrm{CN}-2 \mathrm{BF}_{4}+6 \mathrm{H}_{2} \mathrm{O}\right]^{2+}$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v(\mathrm{CN}): 2922 ; v\left(\mathrm{BF}_{4}^{-}\right): 1055$. UV-Vis $\left[\mathrm{CH}_{3} \mathrm{CN} ; \lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]: 231\left(5.36 \times 10^{4}\right), 283\left(3.06 \times 10^{4}\right), 324$
$\left(2.92 \times 10^{4}\right), 363(\mathrm{sh}), 452\left(0.31 \times 10^{4}\right)$. Anal. Calcd. for $\left(\mathrm{C}_{32} \mathrm{H}_{19} \mathrm{~N}_{9} \mathrm{~B}_{4} \mathrm{~F}_{16} \mathrm{Mo}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}: \mathrm{C}$, 29.08; H, 2.54; N, 11.74. Found: C, 28.45; H, 2.53; N, 11.16.

Scheme S2 Synthesis of compound 2.
Synthesis of $\boldsymbol{c i s}-\left[\mathbf{R u}^{\mathrm{II}_{2}}\left(\mathbf{L}^{\mathbf{1}}\right)_{\mathbf{2}}(\mathbf{O A c})_{\mathbf{2}}\right]\left[\mathbf{P F}_{\mathbf{6}} \mathbf{l}_{\mathbf{2}} \mathbf{(3)}\right.$. Ligand $\mathrm{L}^{1}(50 \mathrm{mg}, 0.24 \mathrm{mmol})$ was added to a methanolic solution $(15 \mathrm{~mL})$ of $\left[\mathrm{Ru}_{2}(\mathrm{OAc})_{4} \mathrm{Cl}\right](57 \mathrm{mg}, 0.12 \mathrm{mmol})$ and $\mathrm{TBAPF}_{6}(93 \mathrm{mg}$, 0.24 mmol). The mixture was refluxed overnight and initial dark brown color of the solution turned to dark green. Upon completion, the reaction was cooled and the solution was concentrated under vacuum and 15 mL of toluene was added with stirring to induce precipitation. The solid residue was washed with diethyl ether ($3 \times 10 \mathrm{~mL}$) and dried in vacuum. To obtain pure crystalline compound, 10 mL of diethyl ether was layered onto a saturated acetonitrile solution of $\mathbf{3}$ in a schlenk tube. Yield: 110 mg (90%). ESI-MS, m/z: 882.9498, $\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+} ; 368.9861\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v\left(\mathrm{OAc}^{-}\right) ; 1605,1438$, $v\left(\mathrm{PF}_{6}{ }^{-}\right)$; 839. UV-Vis $\left[\mathrm{CH}_{3} \mathrm{CN} ; \lambda_{\text {max }}, \mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]: 243\left(3.35 \times 10^{4}\right), 265(\mathrm{sh})$, $335\left(6.76 \times 10^{4}\right), 440\left(1.47 \times 10^{4}\right), 650\left(1.63 \times 10^{4}\right), 771\left(1.32 \times 10^{4}\right)$. Anal. Calcd. for $\left(\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~F}_{12} \mathrm{Ru}_{2}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, 33.12 ; \mathrm{H}, 2.50 ; \mathrm{N}, 11.59$. Found: C, 33.33; H, 2.61; N, 11.42.

Scheme S3 Synthesis of compound 3.
 mmol), $\left[\mathrm{Ru}_{2}(\mathrm{OAc})_{4} \mathrm{Cl}\right](56 \mathrm{mg}, 0.12 \mathrm{mmol})$ and $\mathrm{TBAClO}_{4}(79 \mathrm{mg}, 0.23 \mathrm{mmol})$ was carried out following a similar procedure described for the synthesis of complex 3. The solution

Supporting Information

color underwent color change from dark brown to dark blue upon addition of L^{2}. X-ray quality crystals were grown by layering diethyl ether onto a saturated acetonitrile solution of 3A inside an 8 mm o.d. vacuum-sealed glass tube. Yield: $100 \mathrm{mg}(90 \%)$. ESI-MS, m/z: 846.8575, $\left[\mathrm{M}-\mathrm{ClO}_{4}\right]^{+} ; 373.9439\left[\mathrm{M}-2 \mathrm{ClO}_{4}\right]^{2+}$. IR ($\left.\mathrm{KBr}, \mathrm{cm}^{-1}\right): v\left(\mathrm{OAc}^{-}\right) ; 1601,1432$, $v\left(\mathrm{ClO}_{4}^{-}\right) ; 1088$. UV-Vis $\left[\mathrm{CH}_{3} \mathrm{CN} ; \lambda_{\text {max }}, \mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]: 256\left(6.12 \times 10^{4}\right), 353$ $\left(12.97 \times 10^{4}\right), 465\left(6.57 \times 10^{4}\right), 631\left(1.74 \times 10^{4}\right), 779\left(1.43 \times 10^{4}\right)$. Anal. Calcd. for $\left(\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{~S}_{2} \mathrm{Cl}_{2} \mathrm{Ru}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.5}$: C, 32.68; H, 2.22; $\mathrm{N}, 8.79$. Found: C, 32.10; H, 2.29; N , 8.97 .

Scheme S4 Synthesis of compound 3A.
 $\left[\mathrm{Ru}_{2}(\mathrm{CO})_{4}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}(88 \mathrm{mg}, 0.12 \mathrm{mmol})$ and TBAOTf $(94 \mathrm{mg}, 0.24 \mathrm{mmol})$ was carried out following a similar procedure described for the synthesis of complex 1. X-ray quality crystals were grown by layering diethyl ether onto a saturated acetonitrile solution of 4 inside an 8 mm o.d. vacuum-sealed glass tube. Yield: $108 \mathrm{mg}(88 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $\left.{ }_{6}, 292 \mathrm{~K}\right): \delta 10.16(\mathrm{~s}, 2 \mathrm{H}), 9.59(\mathrm{q}, \mathrm{J}=2.85 \mathrm{~Hz}, 2 \mathrm{H}), 9.38(\mathrm{~d}, \mathrm{~J}=3.45 \mathrm{~Hz}, 2 \mathrm{H}), 9.02$ (dd, J = $14.3 \mathrm{~Hz}, \mathrm{~J}=9.15,4 \mathrm{H}$), $8.77(\mathrm{~m}, 4 \mathrm{H}), 7.75-7.72(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- $\left.\mathrm{d}_{6}, 292 \mathrm{~K}\right): \delta 205.2,199.1,161.1,160.9,155.9,151.7,149.4,148.6,147.7,143.4$, 143.1, 127.4, 126.5, 123.5. ESI-MS, m/z: 323.9765, [M - 3CO- 2OTf] ${ }^{2+}$; 337.9778 [M $2 \mathrm{CO}-2 \mathrm{OTf}]^{2+}, 351.9748[\mathrm{M}-\mathrm{CO}-2 \mathrm{OTf}]^{2+}, 365.9753[\mathrm{M}-2 \mathrm{OTf}]^{2+}$. IR (KBr) data $\left(\mathrm{cm}^{-1}\right)$: $v(\mathrm{CO}) ; 2050$, 1975, $v\left(\right.$ OTf $\left.^{-}\right)$: 1057. UV-Vis $\left[\mathrm{CH}_{3} \mathrm{CN} ; \lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]: 240$ $\left(5.27 \times 10^{4}\right), 281\left(5.20 \times 10^{4}\right), 342\left(4.62 \times 10^{4}\right), 357(\mathrm{sh})$. Anal. Calcd. for $\left(\mathrm{C}_{32} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{O}_{10} \mathrm{~F}_{6} \mathrm{~S}_{2} \mathrm{Ru}_{2}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$: C, 34.69; H, 2.09; N, 11.39. Found: C, 34.67; H, 2.08; N, 11.28.

S6|Page
Scheme S5 Synthesis of compound 4.

Synthesis of trans-[$\left.\mathbf{R h}_{\mathbf{2}} \mathbf{L}^{\mathbf{1}} \mathbf{2}_{\mathbf{(O A c}}^{\mathbf{2}} \mathbf{2}_{\mathbf{2}}\right]\left[\mathbf{B F}_{4}\right]_{\mathbf{2}} \mathbf{(5)}$. The reaction of ligand $\mathrm{L}^{1}(50 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\left[\mathrm{Rh}_{2}(\mathrm{OAc})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}(90 \mathrm{mg}, 0.12 \mathrm{mmol})$ was carried out following a similar procedure described for the synthesis of complex 1. Pure crystalline compound was obtained by layering of diethyl ether onto a saturated acetonitrile solution of $\mathbf{5}$ in a schlenk tube. Yield: $90 \mathrm{mg}(82 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 292 \mathrm{~K}$): $\delta 9.98$ (br, 2H), 9.73-9.29 (m, 4H), 9.12 (br, 2H), 8.87-8.50 (m, 8H), 2.53 (br, 6 H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 292 \mathrm{~K}$): $\delta 162.1$, 162.6, 155.5, 151.5, 148.3, 143.8, 142.7, 141.8, 141.6, 127.7, 123.7, 120.9, 23.9, 23.2. ESIMS, m/z: 369.9908, $\left[\mathrm{M}-2 \mathrm{BF}_{4}\right]^{2+}$. IR (KBr, $\left.\mathrm{cm}^{-1}\right): v\left(\mathrm{OAc}^{-}\right) ; 1566,1452, v\left(\mathrm{BF}_{4}^{-}\right) ; 1060 . \mathrm{UV}-$ Vis $\left[\mathrm{CH}_{3} \mathrm{CN} ; \lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]: 240(\mathrm{sh}), 286\left(4.02 \times 10^{4}\right), 317\left(3.01 \times 10^{4}\right), 357$ (sh), $474\left(0.16 \times 10^{4}\right)$. Anal. Calcd. for $\left(\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Rh}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}: \mathrm{C}, 34.08 ; \mathrm{H}, 3.07 ; \mathrm{N}$, 11.36. Found: C, 33.10; H, 3.09; N, 11.87.

Scheme S6 Synthesis of compound 5.
Synthesis of trans-[$\left.\left.\mathbf{R h}_{2} \mathbf{L}^{2} \mathbf{2}_{\mathbf{2}}(\mathbf{O A c})_{\mathbf{2}}\right]\left[\mathbf{B F}_{\mathbf{4}}\right]_{\mathbf{2}} \mathbf{(5 A}\right)$. The reaction of ligand $\mathrm{L}^{2}(50 \mathrm{mg}, 0.23$ mmol) and $\left[\mathrm{Rh}_{2}(\mathrm{OAc})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}(90 \mathrm{mg}, 0.12 \mathrm{mmol})$ was carried out following a similar procedure described for the synthesis of complex 1. X-ray quality crystals were grown by layering diethyl ether onto a saturated acetonitrile solution of $\mathbf{5 A}$ inside an 8 mm o.d. vacuum-sealed glass tube. Yield: $92 \mathrm{mg}(82 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 292$ $\mathrm{K}): 9.04(\mathrm{br}, 2 \mathrm{H}), 8.78-8.45(\mathrm{~m}, 8 \mathrm{H}), 8.07(\mathrm{~s}, 2 \mathrm{H}), 7.77(\mathrm{br}, 2 \mathrm{H}), 2.13(\mathrm{br}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 292 \mathrm{~K}$): $\delta 168.6,155.5,155.2,153.9,145.3,144.0,143.9,140.2,127.3$, 125.1, 123.5, 24.6, 23.4. ESI-MS, m/z: 374.9531, $\left[\mathrm{M}-2 \mathrm{BF}_{4}\right]^{2+}$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v\left(\mathrm{OAc}^{-}\right)$; 1577, 1428; $v\left(\mathrm{BF}_{4}^{-}\right)$; 1050. UV-Vis $\left[\mathrm{CH}_{3} \mathrm{CN} ; \lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]: 260(3.73 \times$ $\left.10^{4}\right), 285(\mathrm{sh}), 335\left(3.37 \times 10^{4}\right), 375(\mathrm{sh}), 450\left(0.15 \times 10^{4}\right)$. Anal. Calcd. for $\left(\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Rh}_{2}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$: C, 31.85; H, 3.15; $\mathrm{N}, ~ 9.29$. Found: C, 30.37; H , 3.13; N, 9.78.

Scheme S7 Synthesis of compound 5A.
Synthesis of trans-[$\left.\mathbf{C u}_{2} \mathbf{L}^{1} \mathbf{2}_{\mathbf{2}}\left(\mathbf{C H}_{\mathbf{3}} \mathbf{C N}\right)\right]\left[\mathrm{ClO}_{4}\right]_{\mathbf{2}}$ (6). The reaction of ligand $\mathrm{L}^{1}(50 \mathrm{mg}, 0.24$ $\mathrm{mmol})$ and $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)(98 \mathrm{mg}, 0.24 \mathrm{mmol})$ was carried out following a similar procedure described for the synthesis of complex 1. X-ray quality crystals were grown by layering diethyl ether onto a saturated acetonitrile solution of $\mathbf{6}$ inside an 8 mm o.d. Yield: $160 \mathrm{mg}(85 \%)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 292 \mathrm{~K}$): $\delta 10.19$ (s, 2H), 9.19-9.02 (m, 10H), 8.91 (d, J = $9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.95 (s, 2H), 2.04 (s, 6H). ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $\mathrm{d}_{6}, 292 \mathrm{~K}$): $\delta 169.0,154.1,156.4,153.9,149.8,146.5,146.2,143.6,141.7,139.7,126.3,122.0,118.6$. ESI-MS: $m / z 479.0782\left[\mathrm{~L}^{1}{ }_{2} \mathrm{Cu}\right]^{+}$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v\left(\mathrm{ClO}_{4}^{-}\right) ; 1058$. UV-Vis $\left[\mathrm{CH}_{3} \mathrm{CN} ; \lambda_{\text {max }}\right.$, $\left.\mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]$: $288\left(7.27 \times 10^{4}\right)$, $322\left(6.68 \times 10^{4}\right)$. Anal. Calcd. for $\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{Cl}_{2} \mathrm{O}_{8} \mathrm{Cu}_{2}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}$: C, 42.78; H, 3.12; N, 18.59. Found: C, 44.34; H, 3.0; N, 18.08.

Scheme S8 Synthesis of compound 6.
Synthesis of trans-[$\left.\mathrm{Cu}_{2} \mathrm{~L}^{2}{ }_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}(\mathbf{6 A})$. The reaction of ligand $\mathrm{L}^{2}(50 \mathrm{mg}, 0.23 \mathrm{mmol})$ and $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)(94 \mathrm{mg}, 0.23 \mathrm{mmol})$ was carried out following a similar procedure described for the synthesis of complex 1. X-ray quality crystals were grown by layering diethyl ether onto a saturated acetonitrile solution of $\mathbf{6 A}$ inside an 8 mm o.d. Yield: 140 mg (82\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$, 292 K): $\delta 9.40$ (br, 2H), 9.04 (d, J = $8 \mathrm{~Hz}, 2 \mathrm{H}$), 8.93 (d, J = 6.85 Hz, 2H), $8.62(\mathrm{~d}, \mathrm{~J}=8.55 \mathrm{~Hz}, 2 \mathrm{H}), 8.49(\mathrm{~d}, \mathrm{~J}=19.45 \mathrm{~Hz}, 4 \mathrm{H}), 8.02(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, 292 \mathrm{~K}$): δ 166.2, 156.3, 151.5, 151.4, 145.1, 144.9, 142.2, 139.9, 125.9, 122.8, 120.8. ESI-MS: m / z 689.0010, $\left[\mathrm{L}^{2}{ }_{2} \mathrm{Cu}\right]^{+} ; 652.8796,\left[\mathrm{~L}^{2}{ }_{2} \mathrm{Cu}_{2}\left(\mathrm{ClO}_{4}\right)\right]^{+}$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v\left(\mathrm{ClO}_{4}^{-}\right) ; 1083$. UV-Vis $\left[\mathrm{CH}_{3} \mathrm{CN} ; \lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]: 291(\mathrm{sh}), 302$ (sh), $335\left(9.05 \times 10^{4}\right), 348\left(8.35 \times 10^{4}\right)$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{~S}_{2} \mathrm{Cl}_{2} \mathrm{Cu}_{2}: \mathrm{C}, 35.21 ; \mathrm{H}$, 1.88; N, 11.21. Found: C, 35.0; H, 1.89; N, 11.28.

Scheme S9 Synthesis of compound $\mathbf{6 A}$.

X-Ray Data Collection and Refinement

Single-crystal X-ray studies were performed on a CCD Bruker SMART APEX diffractometer equipped with an Oxford Instruments low-temperature attachment. Data were collected at $100(2) \mathrm{K}$ using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $\left(\lambda_{\alpha}=0.71073 \AA\right)$. The frames were integrated in the Bruker SAINT software package, ${ }^{10}$ and the data were corrected for Lorentz and polarization effects. An absorption correction ${ }^{11}$ was applied. Structures were solved and refined with the SHELX suite of programs ${ }^{12}$ as implemented in X -seed. ${ }^{13}$ Hydrogen atoms of the ligands, unless mentioned otherwise, were included in the final stages of the refinement and were refined with a typical riding model. Some of the lattice solvent molecules of complex 4 cannot be modelled satisfactorily due to the presence of severe disorders. Therefore, the Olex-2 mask program has been performed to discard those disordered solvents molecules and gave electron densities of 29.75. This can be tentatively assigned as $1 \mathrm{H}_{2} \mathrm{O}$ and $1 \mathrm{CH}_{3} \mathrm{CN}$. The crystallographic figures have been generated using Diamond 3 software ${ }^{14}$ (50% probability thermal ellipsoids). CCDC files 1518828 (1), 907052 (3A), 907053 (4) $907054(\mathbf{5 A}), 907055(6)$ and $907056(\mathbf{6 A)}$ contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Pertinent crystallographic data and relevant metrical parameters for compounds $\mathbf{1 , 3 A}, \mathbf{4}, \mathbf{5 A}, \mathbf{6}$ and $\mathbf{6 A}$ are summarized in Table S1-S7.

	1	3A 4 $\mathrm{CH}_{3} \mathrm{CN}$	$4 \mathrm{CH}_{3} \mathrm{CN}$
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BF}_{4} \mathrm{MoN}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{10} \mathrm{O}_{12} \mathrm{Ru}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{32} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{~N}_{9} \mathrm{O}_{10} \mathrm{Ru}_{2} \mathrm{~S}_{2}$
Formula Weight	450.02	1109.85	1069.82
Crystal System	Orthorhombic	Monoclinic	Monoclinic
Space Group	Pbcn	P21/n	P121/n1
a (\AA)	17.981(6)	12.3747(12)	14.5183(16)
b (\AA)	9.755(3)	17.9206(19)	13.3559(15)
c (\AA)	18.506(6)	19.028(2)	22.198(2)
α (deg)	90.00	90.00	90.00
β (deg)	90.00	91.200(2)	103.368(2)
γ (deg)	90.00	90.00	90.00
$\mathrm{V}\left(\AA^{3}\right)$	3246.3(18)	4218.7(8)	4187.6(8)
Z	8	4	4
$\rho_{\text {calcd }},\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.842	1.747	1.697
$\mu\left(\mathrm{mm}^{-1}\right)$	0.868	1.014	0.911
F(000)	1776	2224	2112
Reflections			
Collected	27924	27924	27344
Independent	10396	10396	7739
Observed [$\mathrm{I}>2 \sigma$ (I)]	27344	6936	5056
No. of variables	551	544	551
GOF	1.090	1.001	0.951
$\mathrm{R}_{\text {int }}$	0.0720	0.0737	0.0864
Final R indices	$\mathrm{R} 1=0.0642$	$\mathrm{R} 1=0.0579$	$\mathrm{R} 1=0.0603$
$[I>2 \sigma(\mathrm{I})]^{\text {a }}$	wR2 $=0.1329$	$\mathrm{wR} 2=0.1104$	wR2 $=0.1359$
R indices (all data) ${ }^{\text {a }}$	$\begin{aligned} & R 1=0.1007 \\ & \mathrm{wR} 2=0.1497 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0986 \\ & \mathrm{wR} 2=0.1263 \end{aligned}$	$\begin{aligned} & R 1=0.0954 \\ & w R 2=0.1501 \end{aligned}$
	5A	$6 \mathrm{CH}_{3} \mathrm{CN}$	6A
Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BF}_{4} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{RhS}$	$\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{9} \mathrm{O}_{8}$	$\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{ClCuN}_{3} \mathrm{O}_{4} \mathrm{~S}$
Formula Weight	462.02	783.48	376.25
Crystal System	Monoclinic	Monoclinic	Monoclinic
Space Group	P21/n	P21/n	P21/n
a (\AA)	9.8778(15)	8.8107(5)	7.0405(10)
b (\AA)	13.411(2)	$13.3646(8)$	13.4755(18)
c (\AA)	11.4697(19)	23.9099(15)	13.4023(18)
α (deg)	90.00	90.00	90.00
β (deg)	98.784(4)	97.5930(10)	101.378(2)
γ (deg)	90.00	90.00	90.00
$\mathrm{V}\left(\AA^{3}\right)$	1501.6(4)	2790.7(3)	1246.5(3)
Z	4	4	4
$\rho_{\text {calcd }},\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2.044	1.865	2.005
$\mu\left(\mathrm{mm}^{-1}\right)$	1.336	1.786	2.153
F(000)	908	1576	752
Reflections			
Collected	8569	14718	7938
Independent	3063	5160	3078
Observed [$\mathrm{I}>2 \sigma$ (I) $]$	1973	4226	2272
No. of variables	210	425	190
GOF	0.993	1.082	1.065
$\mathrm{R}_{\text {int }}$	0.0802	0.0347	0.0694
Final R indices	$\mathrm{R} 1=0.0613$	$\mathrm{R} 1=0.0420$	$\mathrm{R} 1=0.0456$
$[\mathrm{I}>2 \sigma(\mathrm{I})]^{\text {a }}$	$w R 2=0.1258$	$w R 2=0.1042$	$w R 2=0.1129$
R indices (all data) ${ }^{\text {a }}$	$\mathrm{R} 1=0.1049$	$\mathrm{R} 1=0.0520$	$\mathrm{R} 1=0.0733$
	$\mathrm{wR} 2=0.1424$	$\mathrm{wR} 2=1.082$	$\mathrm{wR} 2=1.065$
${ }^{\text {a }} \mathrm{R}_{1}=\Sigma\| \| \mathrm{F}_{\mathrm{o}}\left\|-\left\|\mathrm{F}_{\mathrm{c}}\right\|\right\| / \Sigma\left\|\mathrm{F}_{\mathrm{o}}\right\|$ with $\mathrm{F}_{0}{ }^{2}>2 \sigma\left(\mathrm{~F}_{0}{ }^{2}\right) . \mathrm{wR}_{2}=\left[\Sigma \mathrm{w}\left(\left\|\mathrm{F}_{0}{ }^{2}\right\|-\left\|\mathrm{F}_{\mathrm{c}}{ }^{2}\right\|\right)^{2 / \Sigma}\left\|\mathrm{F}_{0}{ }^{2}\right\|^{2}\right]^{1 / 2}$			

Table S2 Relevant Metrical Parameters for 1.			
Bond Lengths (\AA)			
Mo1-Mo1'	$2.1155(9)$	Mo1-O1	2.075(4)
Mol-O2	2.119(4)	Mol-N1	2.174(4)
Mo1-N2	2.233(4)	Mo1-N3	$2.466(5)$
Bond Angles (${ }^{\circ}$)			
O1-Mo1-Mo1'	92.92(10)	O1-Mo1-O2'	86.37(15)
N1-Mo1'-N3'	94.37(17)	N2-Mo1-N3	69.18(17)
Mo1-Mo1'-N3'	159.23(12)	O2-Mo1'-N3'	83.18(16)
N1-Mo1'-N2'	93.70(16)	O1-Mo1-N3	106.04(16)
Mo1-Mo1'-N2'	91.35(12)	O2-Mo1'-N2'	89.66(15)
O2-Mo1'-N1	174.85(16)	O1-Mo1-N2	174.16(15)
O1-Mo1-N1'	89.97(16)	Mo1-Mo1'-N1	94.04(13)
Mo1-Mo1'-O2	89.77(10)		
Table S3 Relevant Metrical Parameters for 3A.			
Bond Lengths (\AA)			
Ru1-N5	2.047(4)	Ru1-O1	2.059(3)
Ru1-N1	$2.065(4)$	Ru1-O3	2.089(3)
Ru1-Ru2	2.2906(5)	Ru1-N6	2.293(4)
Ru2-N2	2.050(4)	Ru2-O4	2.056 (3)
Ru2-N4	2.074(4)	Ru2-O2	2.080(3)
Ru2-N3	$2.246(4)$		
Bond Angles (${ }^{\circ}$)			
N5-Ru1-O1	179.62(15)	N5-Ru1-N1	89.24(14)
O1-Ru1-N1	90.41(13)	N5-Ru1-O3	90.73(13
O1-Ru1-O3	89.62(12)	N1-Ru1-O3	178.37(13)
N5-Ru1-Ru2	90.19(10)	O1-Ru1-Ru2	89.97(9)
N1-Ru1-Ru2	91.06(11)	O3-Ru1-Ru2	87.31(8)
N5-Ru1-N6	76.23(14)	O1-Ru1-N6	103.64(12)
N1-Ru1-N6	93.95(14)	O3-Ru1-N6	87.63(13)
Ru2-Ru1-N6	165.44(9)	N2-Ru2-O4	178.70(14)
N2-Ru2-N4	90.41(15)	O4-Ru2-N4	90.17(14)
N2-Ru2-O2	90.98(14)	O4-Ru2-O2	88.46(13)
N4-Ru2-O2	178.15(13)	N2-Ru2-N3	76.26(15)
O4-Ru2-N3	102.54(14)	N4-Ru2-N3	94.63(14)
O2-Ru2-N3	86.89(12)	N2-Ru2-Ru1	89.98(11)
O4-Ru2-Ru1	91.17(9)	N4-Ru2-Ru1	90.44(11)
O2-Ru2-Ru1	88.34(9)	N3-Ru2-Ru1	165.34(10)
Table S4 Relevant Metrical Parameters for 4.			
Bond Lengths (\AA)			
Ru2-Ru1	2.6714(8)	Ru1-N1	$2.186(5)$
Ru1-N6	2.142(5)	Ru1-N7	$2.174(5)$
Ru2-N2	$2.133(5)$	Ru2-N3	$2.137(5)$
Ru2-N5	$2.192(5)$	Ru1-C1	1.853(6)
Ru1-C3	1.866(7)	Ru2-C4	1.862(7)
Ru2-C2	1.876 (8)		
Bond Angles (${ }^{\circ}$)			
N2-Ru2-Ru1	85.03(13)	N2-Ru2-N5	85.29(18)
N5-Ru2-Ru1	84.05(13)	N2-Ru2-N3	76.88(19)
C4-Ru2-N2	93.2(2)	C4-Ru2-Ru1	92.6(2)
C4-Ru2-C2	88.3(3)	C4-Ru2-N5	176.4(2)
C2-Ru2-Ru1	97.1(2)	C4-Ru2-N3	94.6(3)
C2-Ru2-N5	93.3(3)	C2-Ru2-N2	177.3(2)
N3-Ru2-Ru1	160.87(15)	C2-Ru2-N3	100.8(2)
N6-Ru1-Ru2	85.31(13)	N3-Ru2-N5	88.3(2)
N6-Ru1-N1	87.50(18)	N6-Ru1-N7	76.42(19)
N7-Ru1-N1	87.46(19)	N7-Ru1-Ru2	160.15(14)
C1-Ru1-Ru2	91.02(18)	N1-Ru1-Ru2	84.01(13)
C1-Ru1-N7	97.4(2)	C1-Ru1-N6	92.5(2)

C1-Ru1-C3	88.1(3)	C1-Ru1-N1	175.0(2)
C3-Ru1-N1	91.9(2)	C3-Ru1-N7	103.8(2)
C3-Ru1-N6	179.3(2)	C3-Ru1-Ru2	94.4(2)
Table S5 Relevant Metrical Parameters for 5A.			
Bond Lengths (\AA)			
Rh1-N2	2.010(6)	Rh1-O1	2.037(5)
Rh1-O2'	2.037(5)	Rh1'-N1	2.041(6)
Rh1-N3	2.292(6)	Rh1-Rh1'	2.4202(12)
O2-Rh1'	2.037(5)		
Bond Angles (${ }^{\circ}$)			
N2-Rh1-O1	90.9(2)	N2-Rh1-O2'	90.4(2)
O1-Rh1-O2'	175.55(19)	N2-Rh1-N1'	176.7(2)
O1-Rh1-N1'	91.0(2)	O2-Rh1'-N1	87.5(2)
N2-Rh1-N3	78.3(2)	O1-Rh1-N3	92.2(2)
O2'-Rh1-N3	92.2(2)	N1'-Rh1-N3	104.3(2)
N2-Rh1-Rh1'	89.00(17)	O1-Rh1-Rh1'	87.38(14)
O2-Rh1'-Rh1	88.37(15)	N1'-Rh1-Rh1'	88.41(17)
N3-Rh1-Rh1'	167.31(16)		
Table S6 Relevant Metrical Parameters for 6.			
Bond Lengths (\AA)			
Cu1-N1	1.947(3)	Cu1-N6	1.985(3)
$\mathrm{Cu} 1-\mathrm{N} 7$	2.168 (3)	$\mathrm{Cu} 1-\mathrm{Cu} 2$	2.6199(5)
Cu2-N1S	1.966 (3)	$\mathrm{Cu} 2-\mathrm{N} 5$	2.016(3)
$\mathrm{Cu} 2-\mathrm{N} 2$	2.029(3)	$\mathrm{Cu} 2-\mathrm{N} 3$	2.089(3)
Bond Angles (${ }^{\circ}$)			
N1-Cu1-N6	162.47(11)	N1-Cu1-N7	114.58(10)
N6-Cu1-N7	80.08(10)	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cu} 2$	87.43(8)
N6-Cu1-Cu2	82.77(8)	N7-Cu1-Cu2	150.16(7)
N1S-Cu2-N5	110.85(11)	N1S-Cu2-N2	110.49(11)
N5-Cu2-N2	135.21(10)	N1S-Cu2-N3	103.64(11)
N5-Cu2-N3	105.98(10)	N2-Cu2-N3	80.05(10)
N1S-Cu2-Cu1	84.17(9)	N5-Cu2-Cu1	83.75(8)
N2-Cu2-Cu1	84.02(7)	N3-Cu2-Cu1	163.89(7)
Table S7 Relevant Metrical Parameters for $\mathbf{6 A}$.			
Bond Lengths (\AA)			
Cu1-N1'	1.953(3)	$\mathrm{Cu} 1-\mathrm{N} 2$	1.981(3)
Cu1-N3	2.249(3)	$\mathrm{Cu} 1-\mathrm{Cu} 1^{\prime}$	2.6468(9)
$\mathrm{Cu} 1-\mathrm{O} 1$	2.395 (3)		
Bond Angles (${ }^{\circ}$)			
N1'-Cu1-N2	163.26(12)	N1'-Cu1-N3	108.28(12)
N2-Cu1-N3	80.27(12)	N2-Cu1-O1	106.86(11)
N1'-Cu1-O1	86.24(12)	N3-Cu1-O1	99.82(11)
$\mathrm{N} 1^{\prime}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\prime}$	85.48(9)	N2-Cu1-Cu1 ${ }^{\prime}$	84.16(9)
N3-Cu1-Cu1 ${ }^{\prime}$	163.46(9)	O1-Cu1-Cu1'	89.98(8)

Table S8 Chemical shift values for H_{a} protons of ($\mathrm{L}^{1}, \mathrm{~L}^{2}$) and complexes $\mathbf{1 , 2 , 4 , 5 , 5 A}, \mathbf{6}, \mathbf{6 A}$.

$\mathbf{L}^{\mathbf{1}}(9.19)$		$\mathbf{L}^{\mathbf{2}}(9.13)$
cis	trans	trans
$\mathbf{1}(7.70)$	$\mathbf{5}(9.12)$	$\mathbf{5 A}(9.04)$
$\mathbf{2}(7.79)$	$\mathbf{6}(9.11)$	$\mathbf{6 A}(9.04)$
$\mathbf{4}(7.74)$		

Fig. S1 Cyclic voltammetry of (a) L^{1} and (b) L^{2} in acetonitrile with TBAP as supporting electrolyte.

Fig. S2 Cyclic voltammetry of $\mathbf{6 A}$ in acetonitrile with TBAPF_{6} as supporting electrolyte.

UV-Visible Absorption Spectra of Compounds

Fig. S3 UV-visible absorption spectrum of $\mathbf{1}$.

Fig. S4 UV-visible absorption spectrum of $\mathbf{2}$.

Fig. S5 UV-visible absorption spectrum of 3 .

Fig. S6 UV-visible absorption spectrum of 3A.

Fig. S7 UV-visible absorption spectrum of 4 .

Fig. S8 UV-visible absorption spectrum of 5 .

Fig. S9 UV-visible absorption spectrum of 5A.

Fig. S10 UV-visible absorption spectrum of 6 .

Fig. S11 UV-visible absorption spectrum of $\mathbf{6 A}$.

Fig. S12 UV-vis changes monitored (with time) at four potentials (a) -0.17 V (b) -0.57 V (c) -1.17 V and (d) -1.62 V for compound $\mathbf{3 A}$.

Fig. S13 EPR spectrum for $\mathbf{1}$ in frozen acetonitrile at 120 K .

Scheme S10 Interaction between $\mathrm{M}_{2} \delta^{*}$ orbital and acetate π^{*} orbital.

Theoretical Study

Calculations were performed using density functional theory (DFT) with Becke's three parameter hybrid exchange functional ${ }^{15}$ and the Lee-Yang-Parr correlation functional (B3LYP). ${ }^{16}$ Atomic coordinates of the metal-ligand complexes were taken from the singlecrystal X-ray structures. The double- ζ basis set of Hay and Wadt (LanL2DZ) with a small core (1s2s2p3s3p3d) effective core potential (ECP) ${ }^{17}$ was used for the $\mathrm{Mo}, \mathrm{Ru}, \mathrm{Rh}$ and Cu . The ligand atoms $\mathrm{H}, \mathrm{C}, \mathrm{N}$ and O atoms were described using the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis sets, and $6-31 \mathrm{G}+(2 \mathrm{~d})$ basis sets for S atom was employed. All calculations were performed with the Gaussian 09 (G09) ${ }^{18}$ suite of programs. Gaussview 5 was used for generating the orbital plots. ${ }^{19}$ Percentage compositions of the molecular orbitals were calculated from the Gaussian output files using AOMix program. ${ }^{20}$

References

1 (a) F. A. Cotton, Z. C. Mester and T. R. Webb, Acta Cryst., 1974, B30, 2768; (b) A. B. Brignole and F. A. Coton, Inorg. Synth., 1972, 13, 87; (c) D. Lawton and R. Mason, J. Am. Chem. Soc., 1965, 87, 921.
2 (a) W. Clegg, G. Pimblett and C. D. Garner, Polyhedron, 1986, 5, 31; (b) G. Pimblett, C. D. Garner and W. Clegg, J. Chem. Soc., Dalton Trans., 1986, 1257; (c) F. A. Cotton, A. H. Reid and W. Schwotzer, Inorg. Chem., 1985, 24, 3965.
3 (a) F. A. Cotton and K. J. Wieinger, Inorg. Synth., 1992, 29, 134; (b) F. A. Cotton, J. L. Eglin and K. J. Wiesinger, Inorg. Chim. Acta., 1992, 195, 11; (c) F. A. Cotton and K. J.

Supporting Information

Wiesinger, Inorg. Chem., 1991, 30, 871; (d) J. Telser and R. S. Drago, Inorg. Chem., 1984, 23, 1798.

4 D. S. Martin, R. A. Newman and I. M. Vlasnik, Inorg. Chem., 1980, 19, 3404.
5 W. J. Klemperer and B. Zhong, Inorg. Chem., 1993, 32, 5821.
6 G. A. Rempel, P. Legzdins, H. Smith and G. Wilkinson, Inorg. Synth., 1972, 13, 90.
7 G. Pimblett, C. D. Garner and W. Clegg, J. Chem. Soc., Dalton Trans., 1986, 1257.
8 G. J. Kubas, Inorg. Synth., 1979, 19, 90.
9 (a) K. V. Reddy, K. Mogilaiah and B. Sreenivasulu, J. Ind. Chem. Soc., 1986, 63, 443;
(b) R. P. Thummel, F. Lefoulon, D. Cantu and R. J. Mahadevan, J. Org. Chem., 1984, 49, 2208; (c) T. C. Majewicz and P. Caluwe, J. Org. Chem., 1974, 39, 720; (d) E. M. Hawes and D. G. Wibberley, J. Chem. Soc., 1966, 315; (e) D. L. Ashford, C. R. K. Glasson, M. R. Norris, J. J. Concepcion, S. Keinan, M. K. Brennaman, J. L. Templeton and T. J. Meyer, Inorg. Chem., 2014, 53, 5637.

10 SAINT+ Software for CCD difractometers; Bruker AXS: Madison, WI, 2000.
11 G. M. Sheldrick, SADABS Program for Correction of Area Detector Data; University of Göttingen: Göttingen, Germany, 1999.
12 (a) SHELXTL Package v. 6.10; Bruker AXS: Madison, WI, 2000; (b) G. M. Sheldrick, SHELXS-86 and SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
13 (a) J. L. Atwood and L. J. Barbour, Cryst. Growth Des., 2003, 3, 3; (b) L. J. Barbour, J. Supramol. Chem., 2001, 1, 189.

14 K. Bradenburg, Diamond, version 3.1e; Crystal Impact GbR: Bonn, Germany, 2005.
15 R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, U.K., 1989.
16 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 1998, 37, 785.

17 (a) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270; (b) W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284; (c) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.

18 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.

Supporting Information

Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C.01; Gaussian, Inc., Wallingford, CT, 2009.

19 GaussView, Version 5, R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission, KS, 2009.

20 (a) S. I. Gorelsky, AOMix: Program for Molecular Orbital Analysis; York University: Toronto, 1997, http://www.sg-chem.net/; (b) S. I. Gorelsky and A. B. P. Lever, J. Organomet. Chem. 2001, 635, 187.

