Supporting Information for

Brønsted Acid-Catalysed Intramolecular Hydroamination of Unactivated Alkenes: Metal Triflates as an *in situ* Source of Triflic Acid

Junqi Chen, Sarah K. Goforth, Bradley A. McKeown and T. Brent Gunnoe*

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States

Index	Page
NMR spectra	, , , , , , , , , , , , , , , , , , ,
NMR spectra of 1a	S2
NMR spectra of 1b	S3
NMR spectra of 1c	S4
NMR spectra of $1c-d_2$	S5
NMR spectra of methyl 4-[(2,2-diphenyl-4-pentenylamino)-methyl]benzoate	S6
NMR spectra of 4-nitrobenzyl(2,2-diphenyl-4-pentenyl) amine	S7
NMR spectra of 4-methoxybenzyl(2,2-diphenyl-4-pentenyl)amine	S8
NMR spectra of 4-bromobenzyl(2,2-diphenyl-4-pentenyl)amine	S9
¹ H-NMR spectra of hydroamination products	S10-S13
Water addition to the hydroamination of 1c	S14

Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum (150 MHz, CD_2Cl_2) of 1a.

Figure S4. ${}^{13}C{}^{1}H$ NMR spectrum (150 MHz, CDCl₃) of 1b.

Figure S6. ${}^{13}C{}^{1}H$ NMR spectrum (150 MHz, CDCl₃) of 1c.

Figure S7. ¹H NMR spectrum (600 MHz, CDCl₃) of 1c-*d*₂.

Figure S8. ¹H NMR spectrum (600 MHz, CD_2Cl_2) of 4-[(2,2-diphenyl-4-pentenylamino)-methyl]benzoate.

Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum (150 MHz, CD_2Cl_2) of 4-[(2,2-diphenyl-4-pentenylamino)-methyl]benzoate.

Figure S10. ¹H NMR spectrum (600 MHz, CD₂Cl₂) of 4-nitrobenzyl(2,2-diphenyl-4-pentenyl) amine.

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum (150 MHz, CD_2Cl_2) of 4-nitrobenzyl(2,2-diphenyl-4-pentenyl) amine.

Figure S13. ${}^{13}C{}^{1}H$ NMR spectrum (150 MHz, CD_2Cl_2) of 4-methoxybenzyl(2,2-diphenyl-4-pentenyl)amine.

Figure S14. ¹H NMR spectrum (600 MHz, CD₂Cl₂) of 4-bromobenzyl(2,2-diphenyl-4-pentenyl)amine.

Figure S15. ${}^{13}C{}^{1}H$ NMR spectrum (150 MHz, CD_2Cl_2) of 4-bromobenzyl(2,2-diphenyl-4-pentenyl)amine.

Figure S16. ¹H NMR spectrum (600 MHz, C₆D₅NO₂) of hydroamination product of 1a.^{*a,b*}

Figure S17. ¹H NMR spectrum (600 MHz, C₆D₅NO₂) of hydroamination product of 1b.^{*a,b*}

Figure S18. ¹H NMR spectrum (600 MHz, C₆D₅NO₂) of hydroamination product of 1c.^{*a,b*}

Figure S19. ¹H NMR spectrum (600 MHz, $C_6D_5NO_2$) of hydroamination product of methyl 4-[(2,2-diphenyl-4-pentenylamino)-methyl]benzoate.^{*a,b*}

Figure S20. ¹H NMR spectrum (600 MHz, C₆D₅NO₂) of hydroamination product of 4-nitrobenzyl(2,2-diphenyl-4-pentenyl) amine.^{*a,b*}

Figure S21. ¹H NMR spectrum (600 MHz, $C_6D_5NO_2$) of hydroamination product of 4-methoxybenzyl(2,2-diphenyl-4-pentenyl)amine.^{*a,b*}

Figure S22. ¹H NMR spectrum (600 MHz, C₆D₅NO₂) of hydroamination product of 4-bromobenzyl(2,2-diphenyl-4-pentenyl)amine.^{*a,b*}

- a: The resonance at 0.0 ppm is the internal standard, hexamethylsiloxane (HMDSO).
- b: Integrations of the aromatic region are inflated due to overlap with solvent resonances.

Table S1. Water's influence on Al(OTf)₃ catalyzed hydroamination.^{*a,b,c*}

H ₂ N	\frown	5 mol% Al(O	res H	HN, PI		
Ph Ph		150 °C, C ₆ D ₅ NO ₂		~~. ~~	run Ph	
10	;				2c	
	Entry	Additives	Yield (%)	Conv. (%)	_	
	1	none	76	82	-	
	2	$0.25 \; eq. \; H_2O$	80	81		
	3	0.5 eq. H ₂ O	85	86		
	4	1 eq. H ₂ O	76	81		
	5	2 eq. H ₂ O	83	86		

^a All reactions were performed in sealed NMR tubes containing $C_6D_5NO_2$ with 0.8 M substrate, 5 mol% Al(OTf)₃. ^b Yields/conversions were recorded at 16h and determined by ¹H NMR using

hexamethyldisiloxane as internal standard (the standard deviations for % yields are < 5%). ^c Equivalents of H₂O relative to Al(OTf)₃.