Electronic Supplementary Information for

Synthesis and characterisation of ruthenium-nitrosyl complexes in oxygen-rich ligand environments.

V. Mahesh Krishnan, Hadi D. Arman, and Zachary J. Tonzetich*

Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249 zachary.tonzetich@utsa.edu

Contents	Pages
Figure S1. Infrared spectrum of 1 as a thin film.	S 2
Figure S2. Infrared spectrum of 2 as a thin film.	S2
Figure S3. Infrared spectrum of 3 as a thin film.	S 3
Figure S4. Infrared spectrum of 4 as a thin film.	S 3
Figure S5. Electronic absorption spectrum of 1 in dichloromethane.	S4
Figure S6. Electronic absorption spectrum of 2 in dichloromethane.	S4
Figure S7. Electronic absorption spectrum of 3 in dichloromethane.	S5
Figure S8. Electronic absorption spectrum of 4 in dichloromethane.	S5
Figure S9. Infrared spectrum of 2+ as a thin film.	S6
Figure S10. Electronic absorption spectrum of 2+ in dichloromethane.	S6
Figure S11. ¹ H NMR spectrum of 2+ in acetonitrile- d_3 .	
Figure S12. Electronic absorption spectrum of 5+ in dichloromethane.	S 7
Figure S13. ¹ H NMR spectrum of 5+ in chloroform- <i>d</i> .	S7
Figure S14. Electronic absorption spectrum of 5+ in dichloromethane.	S8
Figure S15. ¹ H NMR spectrum of 6 in chloroform-d.	S8
Figure S16. Cyclic voltammograms of 1 in dichloromethane.	S9
Figure S17. Cyclic voltammograms of 2 in dichloromethane.	S9
Figure S18. Cyclic voltammogram of 4 in dichloromethane.	S10
Figure S19. Cyclic voltammograms of 5+ in dichloromethane.	S10
Figure S20. Thermal ellipsoid drawing of 1.	S11
Figure S21. Thermal ellipsoid drawing of 3.	S12
Figure S22. Thermal ellipsoid drawing of 4.	S13
Table S1. Crystallographic data and refinement parameters for 1-3.	S14
Table S2. Crystallographic data and refinement parameters for 4 and 7.	S15

Figure S1. Infrared spectrum of $[Ru(L_{OMe})(NO)(H_4Cat)]$ (1) as a thin film on NaCl.

Figure S2. Infrared spectrum of $[Ru(L_{OMe})(NO)('Bu_2Cat)]$ (2) as a thin film on NaCl.

Figure S3. Infrared spectrum of $[Ru(L_{OMe})(NO)(Br_4Cat)]$ (3) as a thin film on NaCl.

Figure S4. Infrared spectrum of $[Ru(L_{OMe})(NO)(NaphCat)]$ (4) as a thin film on NaCl.

Figure S5. Electronic absorption spectrum of $[Ru(L_{OMe})(NO)(H_4Cat)]$ (1) in dichloromethane.

Figure S6. Electronic absorption specturm of $[Ru(L_{OMe})(NO)('Bu_2Cat)]$ (2) in dichloromethane.

Figure S7. Electronic absorption spectrum of $[Ru(L_{OMe})(NO)(Br_4Cat)]$ (3) in dichloromethane.

Figure S8. Electronic absorption spectrum of $[Ru(L_{OMe})(NO)(NaphCat)]$ (4) in dichloromethane.

Figure S9. Infrared spectrum of $[Ru(L_{OMe})(NO)('Bu_2cat)](BF_4)$ (2⁺) as a thin film on NaCl.

Figure S10. Electronic absorption spectrum of $[Ru(L_{OMe})(NO)(^{t}Bu_{2}cat)](BF_{4})$ (2⁺) in dichloromethane.

Figure S11. 500 MHz ¹H NMR spectrum of crude $[Ru(L_{OMe})(NO)('Bu_2cat)](BF_4)$ (**2**⁺) in acetonitrile-*d*3 (*s*). Asterisk denotes resonance due to residual dichloromethane.

Figure S12. Electronic absorption spectrum of $[Ru(L_{OMe})(NCCH_3)('Bu_2quin)](BF_4)$ (5⁺) in dichloromethane obtained by photolysis of 2⁺ in acetonitrile.

Figure S13. 500 MHz ¹H NMR spectrum (CDCl₃) of $[Ru(L_{OMe})(NCCH_3)(^{t}Bu_2quin)](BF_4)$ (**5**⁺) obtained by photolysis of **2**⁺ in acetonitrile.

Figure S14. Electronic absorption specturm of $[Ru(L_{OMe})(NCCH_3)(Br_4cat)]$ (6) in dichloromethane.

Figure S15. 500 MHz ¹H NMR spectrum (CDCl₃) of $[Ru(L_{OMe})(NCCH_3)(Br_4cat)]$ (6) obtained by photolysis of 3 in a mixture of dichloroethane and acetonitrile. Asterisks denote resonances due to residual dichloromethane, dichloroethane, acetone and grease.

Figure S16. Anodic (left) and cathodic (right) portions of the cyclic voltammogram of $[Ru(L_{OMe})(NO)(H_4cat)]$ (1) at a Pt electrode in dichloromethane. The scan rate is 50 mV/s and the supporting electrolyte is 0.1 M Bu₄NPF₆.

Figure S17. Anodic (left) and cathodic (right) portions of the cyclic voltammogram of $[Ru(L_{OMe})(NO)('Bu_2cat)]$ (2) at a Pt electrode in dichloromethane. The scan rate is 50 mV/s and the supporting electrolyte is 0.1 M Bu₄NPF₆.

Figure S18. Cyclic voltammogram of $[Ru(L_{OMe})(NO)(Naphcat)]$ (4) at a Pt electrode in dichloromethane. The scan rate is 50 mV/s and the supporting electrolyte is 0.1 M Bu₄NPF₆.

Figure S19. Cyclic voltammograms of $[Ru(L_{OMe})(CH3CN)('Bu_2quin)](BF_4)$ (5+) at a Pt electrode in dichloromethane. The scan rate is 50 mV/s and the supporting electrolyte is 0.1 M Bu₄NPF₆.

Figure S20. Thermal ellipsoid rendering (50%) of $[Ru(L_{OMe})(NO)(H_4cat)]$ (1). Hydrogen atoms omitted for clarity. Selected bond distances (Å) and angles (deg): Ru(1)-N(1) = 1.720(5); Ru(1)-O(7) = 1.986(3); Ru(1)-O(avg) = 2.062(4); N(1)-O(12) = 1.166(7); Ru(1)-N(1)-O(12) = 171.4(4).

Figure S21. Thermal ellipsoid rendering (50%) of one of the two cyrstallographically independent molecules of $[Ru(L_{OMe})(NO)(Br_4cat)]$ (3) in the asymetric unit. Hydrogen atoms omitted for clarity. Selected bond distances (Å) and angles (deg): Ru(1)-N(1) = 1.721(6); Ru(1)-O(1) = 2.018(4); Ru(1)-O(2) = 2.012(4); Ru(1)-O(avg) = 2.073(4); N(1)-O(12) = 1.188(7); Ru(1)-N(1)-O(12) = 170.2(5).

Figure S22. Thermal ellipsoid rendering (50%) of $[Ru(L_{OMe})(NO)(Naphcat)]$ (4). Hydrogen atoms omitted for clarity. Selected bond distances (Å) and angles (deg): Ru(1)-N(1) = 1.720(3); Ru(1)-O(10) = 1.980(3); Ru(1)-O(11) = 1.982(3); Ru(1)-O(avg) = 2.063(3); N(1)-O(12) = 1.162(4); Ru(1)-N(1)-O(12) = 176.2(3).

Compound	1	2	3 [§]
Empirical formula	C ₁₇ H ₂₇ NCoO ₁₂ P ₃ Ru	C ₂₅ H ₄₃ NCoO ₁₂ P ₃ Ru	C ₁₇ H ₂₃ NBr ₄ CoO ₁₂ P ₃ Ru
Formula weight (g/mol)	690.31	802.54	1005.91
Temperature (K)	98(2)	98(2)	98(2)
Crystal system, space group	Orthorhombic Pnma	Orthorhombic <i>P</i> bca	Orthorhombic $P ca 2_1$
Unit cell dimensions (Å, deg)	a = 16.740(3) b = 11.664(2) c = 12.351(2)	a = 16.170(3) b = 17.167(3) c = 24.094(4)	a = 24.071(3) b = 14.2382(17) c = 17.677(2)
Volume (Å ³)	2411.6(7)	6688(2)	6058.5(13)
Z	4	8	8
Calculated density (g/cm ³)	1.901	1.594	2.206
Absorption coefficient (mm ⁻¹)	1.576	1.149	6.536
F(000)	1392	3296	3872
Crystal size (mm)	$0.16 \times 0.06 \times 0.02$	$0.33 \times 0.30 \times 0.10$	$0.30 \times 0.23 \times 0.13$
Θrange	2.40 to 27.50°	3.03 to 25.50°	2.98 to 27.43°
Limiting indices	$-21 \le h \le 21,$ $-15 \le k \le 11,$ $-16 \le l \le 16$	$-19 \le h \le 19,$ $-20 \le k \le 20,$ $-29 \le l \le 27$	$-30 \le h \le 30,$ $-18 \le k \le 18,$ $-22 \le l \le 21$
Reflections collected / unique	17093 / 2896 [$R_{int} = 0.0628$]	42240 / 6203 [$R_{int} = 0.0661$]	45644 / 12832 [R _{int} = 0.0485]
Completeness to Θ	99.9%	99.7%	99.8%
Absorption correction	multi-scan ABSCOR	multi-scan ABSCOR	multi-scan ABSCOR
Min. and max transmission	0.749 and 1.000	0.449 and 1.000	0.594 and 1.000
Data / restraints / parameters	2896 / 0 / 169	6203 / 0 / 400	12832 / 1 / 692
Goodness-of-fit on F ²	1.013	1.047	1.060
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0454,$ w $R_2 = 0.1228$	$R_1 = 0.0432,$ $wR_2 = 0.1091$	$R_1 = 0.0308,$ $wR_2 = 0.0557$
R indices (all data)	$R_1 = 0.0493,$ $wR_2 = 0.1264$	$R_1 = 0.0497,$ $wR_2 = 0.1138$	$R_1 = 0.0397,$ $wR_2 = 0.0577$
Largest diff. peak and hole (e·Å ⁻³)	2.124 and -0.795	1.210 and -1.053	0.552 and -0.583

Table S1. Crystallographic data and refinement parameters for compounds 1-3.[‡]

[‡]Refinement method was full-matrix least-squares on F²; wavelength = 0.71073 Å. R₁ = $\sum ||F_o| - |F_c| / \sum |F_o|$; wR₂ = { $\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]$ }^½. [§]Compound **3** was refined as an inversion twin.

Compound	4	7
Empirical formula	C ₂₁ H ₂₉ NCoO ₁₂ P ₃ Ru	$C_{22}H_{44}N_3CoF_6O_{18}P_3RuS_2$
Formula weight (g/mol)	690.31	802.54
Temperature (K)	98(2)	298(2)
Crystal system, space group	Monoclinic $P2_1/c$	Monoclinic Cc
Unit cell dimensions (Å, deg)	a = 10.4496(16) b = 11.5244(17) c = 22.855(4)	a = 20.084(3) b = 12.6011(17) c = 16.863(2)
	$\beta = 97.413(3)$	$\beta = 93.902(2)$
Volume (Å ³)	2729.3(7)	4257.8(10)
Z	4	4
Calculated density (g/cm ³)	1.802	1.669
Absorption coefficient (mm ⁻¹)	1.399	1.050
F(000)	1496	2172
Crystal size (mm)	$0.18\times0.17\times0.10$	$0.50 \times 0.44 \times 0.30$
Θ range	1.965 to 25.500°	3.453 to 25.049°
Limiting indices	$-12 \le h \le 7,$ $-13 \le k \le 13,$ $-23 \le l \le 27$	$-23 \le h \le 23,$ $-13 \le k \le 15,$ $-20 \le l \le 20$
Reflections collected / unique	36848 / 5033 [R _{int} = 0.0759]	12678 / 6982 [$R_{int} = 0.0473$]
Completeness to Θ	99.3%	99.1%
Absorption correction	multi-scan ABSCOR	multi-scan ABSCOR
Min. and max transmission	0.430 and 1.000	0.449 and 1.000
Data / restraints / parameters	5033 / 0 / 328	6982 / 2 / 517
Goodness-of-fit on F ²	1.058	1.000
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0478,$ $wR_2 = 0.1212$	$R_1 = 0.0485,$ $wR_2 = 0.1222$
R indices (all data)	$R_1 = 0.0515,$ $wR_2 = 0.1258$	$R_1 = 0.0493,$ w $R_2 = 0.1236$
Largest diff. peak and hole (e·Å ⁻³)	1.291 and -1.788	0.696 and -0.836

Table S2. Crystallographic data and refinement parameters for compounds 4 and 7. ‡

^{*}Refinement method was full-matrix least-squares on F²; wavelength = 0.71073 Å. R₁ = $\sum ||F_o| - |F_c| / \sum |F_o|$; wR₂ = { $\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]$ }.