Supporting Information

Chemically reversible binding of H₂S to a zinc porphyrin complex: towards implementation of a reversible sensor via a "coordinative-based approach".

Maria Strianese^{a*}, Marina Lamberti^b, Claudio Pellecchia^{a*}

- ^aDipartimento di Chimica e Biologia "Adolfo Zambelli", ^bDipartimento di Fisica "E. Caianiello" Università degli Studi di Salerno Via Giovanni Paolo II, 132 84084 Fisciano (SA) Italy
- *Corresponding author. E-mail: mstriane@unisa.it

*Corresponding author. E-mail: cpellecchia@unisa.it

Contents:

Figure S1, HR MALDI-FT-ICR spectrum of TMPyPZn	2
Figure S2, ¹ H NMR spectrum of <i>TMPyPZn</i> in DMSO- d_6	3
Figure S3, ¹³ C NMR spectrum of <i>TMPyPZn</i> in DMSO-d ₆	4
Figure S4, ¹ H NMR spectrum of <i>TMPyPZn</i> in D_2O	5
Figure S5, ¹³ C NMR spectrum of <i>TMPyPZn</i> in D_2O	6
Figure S6, Electronic absorption spectra of <i>TMPyPZn</i> and TMPyP	7
Figure S7, Fluorescence emission spectra of <i>TMPyPZn</i> and TMPyP	8
Figure S8, Fluorescence emission spectra of $TMPyPZn$ at different λ_{exc}	9
Figure S9, ¹ H NMR spectra of TMPyP in D_2O free and upon HS ⁻ addition	10
Figure S10, Fluorescence NaSH titration of TMPyPZn	11
Figure S11, Fluorescence titration of $TMPyPZn$ with H ₂ S	12
Figure S12, HR MALDI-FT-ICR spectrum of TMPyPZn upon HS- addition	13

Figure S1. HR MALDI-FT-ICR spectrum of *TMPyPZn* in water solution (ionizing the sample in the positive ion mode)

Figure S2. ¹H NMR spectrum of *TMPyPZn* in DMSO- d_6 (rt, 400.13 MHz). Peaks denoted with a (*) correspond to the toluenesulfonate counterion.

Figure S3. ¹³C NMR spectrum of *TMPyPZn* in DMSO-*d*₆ (rt, 400.13 MHz)

Figure S4. ¹H NMR spectrum of *TMPyPZn* in D_2O (rt, 400.13 MHz). Peaks denoted with a (*) correspond to the toluenesulfonate counterion.

Figure S5. ¹³C NMR spectrum of *TMPyPZn* in D₂O (rt, 400.13 MHz)

Figure S6. Electronic absorption spectra of TMPyP and *TMPyPZn* (rt, hepes 25 mM, pH 7.4). $[TMPyP] = 5\mu M [TMPyPZn] = 5\mu M$.

Figure S7. Fluorescence spectra of *TMPyP* and *TMPyPZn* (rt, hepes buffer 25mM, pH 7.4) upon excitation at 563 nm. [TMPyP] = 5μ M [TMPyPZn] = 5μ M.

Figure S8. Fluorescence spectra of *TMPyPZn* (rt, hepes buffer 25 mM, pH 7.4) upon excitation at 322, 435, 563 and 611 nm. [TMPyPZn] = 5μ M.

Figure S9. ¹H NMR spectrum of *TMPyP* in D_2O (lower trace), after addition of an excess of HS⁻ (upper trace). Peaks denoted with a (*) correspond to the toluenesulfonate counterion.

*

Figure S10. (A) Emission spectra of TMPyPZn (exc 563 nm) when titrated with NaSH (rt, hepes buffer 25 mM, pH = 7.4). [TMPyZn] = $5*10^{-6}$ M; end concentration of NaSH varied in the range 25-750 μ M. (B) Fluorescence intensity of the system versus HS⁻ concentration.

Figure S11. Fluorescence titration of TMPyPZn ($\lambda_{ex} = 563 \text{ nm}$; $\lambda_{em} = 630 \text{ nm}$) with NaSH (rt, hepes buffer 25 mM, pH = 7.4). [TMPyZn] = 5*10⁻⁶ M; end concentration of NaSH varied in the range 25-750 μ M. F₀ is the fluorescence intensity of the solution without HS⁻. The ratio F₀-F/F is plotted versus the total HS⁻ concentration. The solid line represents the best fit to a linear fitting with a K_b of 1036 ± 53 M⁻¹. The equation used for data fitting is :¹

$$F_0$$
-F/F= K_b [HS⁻]

Generic Display Report (all)

Figure S12. HR MALDI-FT-ICR spectrum of the *TMPyPZn-HS* adduct in water solution (ionizing the sample in the negative ion mode) with the enlargement of the zone in the range 771 - 776 m/z.

Reference List

(1) Lakovicz J.R. *Principles of Fluorescence Spectroscopy*; Kluwer Academic/Plenum, New York, Boston, Dordrecht, Moscow: 1996.