Supplementary Information for

Influence of pH and Mg(II) on the catalytic core domain 5 of a bacterial group II intron

M. Pechlaner, A. Dominguez-Martin and R.K.O. Sigel

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.

Figure S1. Overlay of ¹H,¹H-NOESY spectra of *Av*D5 in the presence of increasing amounts of MnCl₂. The regions connecting base to sugar protons are shown.

Figure S2. Small section of an overlay of ¹H,¹H-NOESY spectra in the presence of increasing amounts of MgCl₂. Red arrows mark the movement of three A24H2 cross-peaks. Only A24H2-C25H1' is significantly decreased at high MgCl₂ concentration.

Table S1.	$K_D [mM]$	of different	residues in	AvD5 as	determined by	/ ISTAR. ^a
-----------	------------	--------------	-------------	---------	---------------	-----------------------

		G1			G2			A3			G4			C5			C6			G7			U8			A9	
H1'		n.a.			n.a.		5.17	+/-	1.17		n.a.		3.48	+/-	0.37	2.23	+/-	0.35		n.a.		2.32	+/-	0.31	4.70	+/-	0.62
H2'		n.a.		5.24	+/-	0.43		-			-		3.88	+/-	0.25	5.13	+/-	0.32	5.49	+/-	0.27	2.61	+/-	0.53		n.a.	
H2/H5		-			-		2.01	+/-	0.26		-			n.a.		2.53	+/-	0.70		-			n.a.		5.22	+/-	0.52
H6/H8	1.42	+/-	0.25		n.a.			n.a.			n.a.		2.06	+/-	0.90		n.a.			n.a.		5.31	+/-	0.85	5.74	+/-	0.65
i																											
		U35			C34			U33			A32			G31		G30		C29			A28			U27			
H1'		n.a.			n.a.		1.42	+/-	0.11		n.a.		3.86	+/-	0.18	4.01	+/-	0.30		n.a.			n.a.		8.13	+/-	0.52
H2'		n.a.			n.a.		5.73	+/-	1.06	16.00	+/-	4.46	1.37	+/-	0.28	4.66	+/-	0.27	5.49	+/-	0.39	4.63	+/-	0.82	5.39	+/-	0.41
H2/H5	39.14	+/-	17.06		n.a.			n.a.			n.a.			-			-			n.a.		3.50	+/-	0.81	5.77	+/-	0.71
H6/H8	9.49	+/-	1.44	1.87	+/-	0.31	1.31	+/-	0.40		n.a.		1.80	+/-	0.20		n.a.		1.04	+/-	0.07		n.a.			n.a.	
ĺ		1110			C11			C12			C12			C14			1115			110			C17				
		010			GI						613			G14			015			Alo			GI/				
H1'	4.93	+/-	0.62	4.22	+/-	0.23	1.88	+/-	0.42		n.a.			n.a.		9.77	+/-	1.12		n.a.		17.79	+/-	4.10			
H2'		n.a.		4.89	+/-	0.49	1.46	+/-	0.37	5.48	+/-	0.53	10.10	+/-	1.14		n.a.			n.a.		20.75	+/-	8.06			
H2/H5		n.a.			-			n.a.			-			-		16.97	+/-	2.78	9.11	+/-	2.26		-				
H6/H8		n.a.		5.37	+/-	0.67	2.41	+/-	0.24		n.a.		6.25	+/-	0.53		n.a.			n.a.			n.a.				
		G26			C25			A24			C23			G22		C21		C20		U19			U18				
H1'	2.02	+/-	0.39	3.51	+/-	0.41	10.20	+/-	2.25		n.a.			n.a.													
H2'		n.a.		5.42	+/-	0.53	20.56	+/-	8.49	4.76	+/-	0.38	4.57	+/-	0.58	16.37	+/-	4.81		n.a.			n.a.			n.a.	
H2/H5		-		5.96	+/-	0.63	13.38	+/-	2.80		n.a.			-			n.a.		22.13	+/-	6.36	30.13	+/-	13.33		n.a.	
H6/H8		n.a.		5.57	+/-	0.67	10.59	+/-	1.68	15.48	+/-	6.59		n.a.		11.31	+/-	1.24	13.44	+/-	2.35	3.47	+/-	0.51		n.a.	

^a M. I. C. Erat, J. Coles, C. Finazzo, B. Knobloch and R. K. O. Sigel, *Coord. Chem. Rev.*, **2012**, *256*, 279-288.

n.a. ... K_D not used in analysis because either curves cannot be fitted or there is too little change in chemical shift to fit data reliably.

Figure S3. Fluorescence emission of *Av*D5-AP3 at 372 nm in dependence of pH in the absence (left) or in the presence (right) of 6 mM Mg(II). Solid and open data points represent measurements in opposite pH directions, i.e. increasing and decreasing, respectively.