Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Computational details for calculating effective ionic radii

In order to obtain an effective ionic radius of a molecular cation, we first carried out geometry optimizations for finding the global energetic minimum on the potential energy surface (PES) in the gas phase. To sustain the best suited quantum mechanical level of theory for all following calculations, we performed geometry optimizations for the MA⁺ cation substitutionary with restricted *Hartree-Fock* (RHF), second order *Møller-Plesset* perturbation theory (MP2), DFT, *coupled cluster theory* with single and double excitations (CCSD) and *coupled cluster* theory with single and double excitations with an additional estimate to triple excitations via perturbation theory (CCSD[T]). The basis set was chosen to be *split-valence triple* zeta with polarization functions, 6-311G^{**}.

The bond lengths of the MA⁺ cation vary to negligible amounts between all the investigated methods (< 1.6 % difference in total). The differences are less than 0.7 % for the C-N bond, < 1.1 % for C-H bonds

and < 1.6 % for N-H bonds. The B3LYP functional reveals geometric values, which are closest to the gold-standard CCSD(T) results, with differences of less than 0.1 % for the C-N bond, 0.4 % for C-H bonds and 0.3 % for N-H bonds, respectively (Fig. 2, left). Vibrational frequencies reveal differences in reciprocal wavelengths of less than 7.1 % for the wagging of the C-N bond and less than 6.5 % for the bending modes of the NH₃ group. Again, the B3LYP functional shows values closest to the results from CCSD(T) method, with differences of less than 0.07 % for C-N wagging and < 0.34 % for NH₃ bending (Fig. 2, right). Accordingly, it is not necessary to use intense cpu-time requiring methods like CCSD or CCSD(T), since DFT with the B3LYP hybrid functional can be used instead.

In order to investigate the influence of the basis set on the final geometry in a more precise way, we performed DFT calculations on the MA⁺ cation with several basis sets from mid-sized 6-311G^{**} to large QZVP. As indicated in Fig. 3, the difference in total energy between the basis set 6-311G^{**} and QZVP is negligible small (< 0.02 %), so it is reasonable and computationally more effective to use 6-311G^{**}

basis set for further calculations (~ 340 times less cpu run-time requiring compared to QZVP). To account for closed shell systems, the spin-multiplicity *S* (*S* = 2s + 1) was fixed at 1. Furthermore, to check whether the optimized geometry is located on a minimum or on a transition state on the PES, we conducted frequency calculations based on the same level of theory and basis set (B3LYP with 6-311G** basis set). In the case where imaginary frequencies were found, bond lengths and angles of the hydrogen atoms involved in the corresponding thermal movement were changed until the optimization yielded only positive frequencies. In order to check whether the energetic minimum was a local or a global one, we performed conformational test calculations. The starting geometry of the molecule was changed by modifying the dihedral angles and the bond lengths of all involved atom-groups. In cases where three substantially different geometries resulted in the same optimized total energy, it was assumed that the global minimum was found. All calculations were carried out with the latest version of Gaussian electronic structure modelling software (Gaussian 09)⁴⁵. The charge density treatment was conducted with the freely available molecule editor Avogadro^{46,47}.

We implied rotational freedom of the molecular cation around the center of mass in the optimized geometry. The total charge density was calculated first for NH₄⁺ and the isocharge density was selected in a manner, that the radius of the sphere which contained the whole isocharge density in every possible orientation of the molecular cation, fits the literature reference value for its ionic radius⁴⁴. Since molecular cations in hybrid ABX₃ compounds are located in a cuboctahedral void inside the BX₃⁻-framework, we chose the reference ionic radius in a 12-fold coordination (in [NH₄]₂BX₆) with an average of 1.695 Å. The resulting isocharge was found to be 0.013 electrons per cubic bohr [e⁻/bohr³]. The radii of the remaining 17 cations (Fig. 2) were calculated by applying the afore-mentioned isocharge density to the total electron density and by building a sphere which contained 100 % of this isocharge density in every possible orientation (for effective radii see Table S1, SI).

Table S1 Revised tolerance factors of 486 ABX₃ combinations for prediction of 3D perovskite formation

molecular cation	NH ⁴⁺	HY⁺	HA⁺	MA ⁺	FA ⁺	GUA ⁺	AZ+	DiMA ⁺	EA+	AA+	TetraMA*	IM⁺	TriMA⁺	isoPA+	PY⁺	isoBuA⁺	DiEA ⁺	PhA⁺
ionic radius [Å]	1.70	2.20	2.26	2.38	2.77	2.80	2.84	2.96	2.99	3.00	3.01	3.03	3.04	3.07	3.22	3.60	3.85	3.88
Ge ²⁺	0.972	1.110	1.126	1.159	1.266	1.274	1.285	1.318	1.327	1.329	1.332	1.337	1.340	1.348	1.390	1.494	1.562	1.570
Sn ²⁺	0.836	0.955	0.969	0.997	1.089	1.096	1.105	1.134	1.141	1.143	1.146	1.150	1.153	1.160	1.195	1.285	1.344	1.351
Pb ²⁺	0.883	1.008	1.023	1.053	1.150	1.158	1.168	1.198	1.205	1.208	1.210	1.215	1.218	1.225	1.262	1.357	1.419	1.427
Ca ²⁺	0.905	1.034	1.049	1.080	1.179	1.187	1.197	1.228	1.236	1.238	1.241	1.246	1.248	1.256	1.294	1.391	1.455	1.463
Sr ²⁺	0.833	0.951	0.966	0.994	1.085	1.092	1.102	1.130	1.137	1.139	1.142	1.146	1.149	1.156	1.191	1.280	1.339	1.346
Tm ²⁺	0.902	1.030	1.045	1.076	1.175	1.183	1.193	1.223	1.231	1.234	1.236	1.241	1.244	1.251	1.290	1.386	1.450	1.457
Sm ²⁺	0.873	0.998	1.013	1.042	1.138	1.146	1.156	1.185	1.192	1.195	1.197	1.202	1.205	1.212	1.249	1.343	1.404	1.412
Yb ²⁺	0.925	1.057	1.072	1.104	1.205	1.213	1.224	1.255	1.263	1.265	1.268	1.273	1.276	1.284	1.323	1.422	1.487	1.495
Dy ²⁺	0.858	0.981	0.995	1.024	1.119	1.126	1.136	1.165	1.172	1.174	1.177	1.182	1.184	1.191	1.228	1.320	1.380	1.388
<u>Br</u>																		
Ge ²⁺	0.961	1.094	1.109	1.141	1.243	1.251	1.262	1.293	1.301	1.304	1.306	1.312	1.314	1.322	1.362	1.462	1.527	1.535
Sn ²⁺	0.831	0.946	0.959	0.987	1.075	1.082	1.091	1.119	1.125	1.128	1.130	1.135	1.137	1.144	1.178	1.264	1.321	1.328
Pb ²⁺	0.879	1.001	1.015	1.044	1.138	1.145	1.154	1.183	1.191	1.193	1.195	1.200	1.203	1.210	1.246	1.337	1.397	1.405
Ca ²⁺	0.901	1.025	1.040	1.069	1.165	1.173	1.183	1.212	1.220	1.222	1.225	1.229	1.232	1.239	1.276	1.370	1.431	1.439
Sr ²⁺	0.828	0.943	0.956	0.984	1.072	1.079	1.088	1.115	1.122	1.124	1.126	1.131	1.133	1.140	1.174	1.260	1.317	1.324
Tm ²⁺	0.894	1.018	1.033	1.062	1.157	1.165	1.174	1.204	1.211	1.214	1.216	1.221	1.223	1.231	1.267	1.360	1.422	1.429
Sm ²⁺	0.916	1.043	1.058	1.088	1.186	1.194	1.204	1.234	1.241	1.244	1.246	1.251	1.254	1.261	1.299	1.394	1.457	1.464
Yb ²⁺	0.910	1.036	1.051	1.081	1.178	1.185	1.195	1.225	1.232	1.235	1.237	1.242	1.245	1.252	1.290	1.384	1.447	1.454
Dy ²⁺	0.870	0.990	1.005	1.033	1.126	1.133	1.143	1.171	1.179	1.181	1.183	1.188	1.190	1.198	1.233	1.324	1.383	1.390
<u>Ľ</u>																		
Ge ²⁺	0.927	1.048	1.062	1.090	1.183	1.190	1.200	1.229	1.236	1.238	1.240	1.245	1.248	1.255	1.290	1.381	1.440	1.448
Sn ²⁺	0.869	0.981	0.995	1.022	1.109	1.115	1.124	1.151	1.158	1.160	1.162	1.167	1.169	1.176	1.209	1.294	1.350	1.356
Pb ²⁺	0.853	0.963	0.976	1.003	1.088	1.095	1.103	1.130	1.136	1.138	1.141	1.145	1.147	1.154	1.187	1.270	1.324	1.331
Ca ²⁺	0.883	0.997	1.011	1.038	1.126	1.133	1.142	1.169	1.176	1.179	1.181	1.185	1.188	1.194	1.228	1.314	1.371	1.378
Sr ²⁺	0.815	0.920	0.933	0.958	1.040	1.046	1.054	1.079	1.086	1.088	1.090	1.094	1.096	1.103	1.134	1.213	1.266	1.272
Tm ²⁺	0.874	0.988	1.001	1.028	1.116	1.122	1.131	1.158	1.165	1.167	1.170	1.174	1.176	1.183	1.217	1.302	1.358	1.365
Sm ²⁺	0.832	0.940	0.953	0.978	1.062	1.068	1.077	1.102	1.109	1.111	1.113	1.117	1.119	1.126	1.158	1.239	1.292	1.299
Yb ²⁺	0.880	0.994	1.008	1.035	1.123	1.130	1.139	1.166	1.172	1.175	1.177	1.182	1.184	1.191	1.224	1.310	1.367	1.374
Dy ²⁺	0.869	0.981	0.995	1.022	1.109	1.115	1.124	1.151	1.158	1.160	1.162	1.167	1.169	1.176	1.209	1.294	1.350	1.356

Cl.

Ge²+ 0.395 Sn²+ 0.622 Pb²+ 0.535 Ca²+ 0.497 Sr²+ 0.627 Tm²+ 0.503 Sm²+ 0.551 Yb²+ 0.465 Dy²+ 0.578 Br Ge²+ Ge²+ 0.372 Sn²+ 0.587 Pb²+ 0.500 Ca²+ 0.464 Sr²+ 0.592 Tm²+ 0.474 Sm²+ 0.439 Yb²+ 0.441 Sm²+ 0.515 L Ge²+ Ge²+ 0.350 Sn²+ 0.441 Pb²+ 0.468 Ca²+ 0.441 Pb²+ 0.468 Ca²+ 0.418 Sr²+ 0.536 Tm²+ 0.536 Tm²+ 0.432 Sm²+ 0.505 Yb²+ 0.423 Dy²+ 0.441	<u>Cl-</u>	octahedral factor μ
Sn²+ 0.622 Pb²+ 0.535 Ca²+ 0.497 Sr²+ 0.627 Tm²+ 0.503 Sm²+ 0.551 Yb²+ 0.465 Dy²+ 0.578 Br	Ge ²⁺	0.395
Pb2* 0.535 Ca2* 0.497 Sr2* 0.627 Tm2* 0.503 Sm2* 0.551 Yb2* 0.465 Dy2* 0.578 Br	Sn ²⁺	0.622
Ca²+ 0.497 Sr²+ 0.627 Tm²+ 0.503 Sm²+ 0.551 Yb²+ 0.465 Dy²+ 0.578 Br Ge²+ Ge²+ 0.372 Sn²+ 0.587 Pb²+ 0.500 Ca²+ 0.464 Sr²+ 0.592 Tm²+ 0.474 Sm²+ 0.439 Yb²+ 0.449 Dy²+ 0.515 Ca²+ 0.441 Sm²+ 0.350 Sn²+ 0.441 Pb²+ 0.468 Ca²+ 0.418 Sr²+ 0.536 Tm²+ 0.432 Sm²+ 0.505 Yb²+ 0.423 Dy²+ 0.441	Pb ²⁺	0.535
Sr²+ 0.627 Tm²+ 0.503 Sm²+ 0.551 Yb²+ 0.465 Dy²+ 0.578 Br	Ca ²⁺	0.497
Tm²+ 0.503 Sm²+ 0.551 Yb²+ 0.465 Dy²+ 0.578 Br	Sr ²⁺	0.627
Sm²+ 0.551 Yb²+ 0.465 Dy²+ 0.578 Br	Tm ²⁺	0.503
Yb²* 0.465 Dy²* 0.578 Br	Sm ²⁺	0.551
Dy²+ 0.578 Br	Yb ²⁺	0.465
Br Ge ²⁺ 0.372 Sn ²⁺ 0.587 Pb ²⁺ 0.500 Ca ²⁺ 0.464 Sr ²⁺ 0.592 Tm ²⁺ 0.474 Sm ²⁺ 0.439 Yb ²⁺ 0.449 Dy ²⁺ 0.515 C Ge ²⁺ Ge ²⁺ 0.350 Sn ²⁺ 0.441 Pb ²⁺ 0.468 Ca ²⁺ 0.418 Sr ²⁺ 0.536 Tm ²⁺ 0.432 Sm ²⁺ 0.505 Yb ²⁺ 0.423 Dy ²⁺ 0.441	Dy ²⁺	0.578
Br Ge ²⁺ 0.372 Sn ²⁺ 0.587 Pb ²⁺ 0.500 Ca ²⁺ 0.464 Sr ²⁺ 0.592 Tm ²⁺ 0.474 Sm ²⁺ 0.439 Yb ²⁺ 0.449 Dy ²⁺ 0.515 C Ge ²⁺ Sn ²⁺ 0.441 Pb ²⁺ 0.468 Ca ²⁺ 0.418 Sr ²⁺ 0.536 Tm ²⁺ 0.432 Sm ²⁺ 0.505 Yb ²⁺ 0.423 Dy ²⁺ 0.441		
Ge²+ 0.372 Sn²+ 0.587 Pb²+ 0.500 Ca²+ 0.464 Sr²+ 0.592 Tm²+ 0.474 Sm²+ 0.439 Yb²+ 0.449 Dy²+ 0.515 E Ge²+ Ge²+ 0.350 Sn²+ 0.441 Pb²+ 0.468 Ca²+ 0.418 Sr²+ 0.536 Tm²+ 0.432 Sm²+ 0.505 Yb²+ 0.423	<u>Br</u>	
Sn²+ 0.587 Pb²+ 0.500 Ca²+ 0.464 Sr²+ 0.592 Tm²+ 0.474 Sm²+ 0.439 Yb²+ 0.449 Dy²+ 0.515 E 6e²+ Ge²+ 0.350 Sn²+ 0.441 Pb²+ 0.468 Ca²+ 0.418 Sr²+ 0.536 Tm²+ 0.432 Sm²+ 0.432 Dy²+ 0.423 Dy²+ 0.423	Ge ²⁺	0.372
Pb2+ 0.500 Ca2+ 0.464 Sr2+ 0.592 Tm2+ 0.474 Sm2+ 0.439 Yb2+ 0.449 Dy2+ 0.515 E 0.441 Pb2+ 0.468 Ca2+ 0.418 Sr2+ 0.536 Tm2+ 0.432 Sm2+ 0.432	Sn ²⁺	0.587
Ca²+ 0.464 Sr²+ 0.592 Tm²+ 0.474 Sm²+ 0.439 Yb²+ 0.449 Dy²+ 0.515 L Ge²+ Ge²+ 0.350 Sn²+ 0.441 Pb²+ 0.468 Ca²+ 0.418 Sr²+ 0.536 Tm²+ 0.432 Sm²+ 0.505 Yb²+ 0.423 Dy²+ 0.441	Pb ²⁺	0.500
Sr²+ 0.592 Tm²+ 0.474 Sm²+ 0.439 Yb²+ 0.449 Dy²+ 0.515 I	Ca ²⁺	0.464
Tm²+ 0.474 Sm²+ 0.439 Yb²+ 0.449 Dy²+ 0.515 L	Sr ²⁺	0.592
Sm²+ 0.439 Yb²+ 0.449 Dy²+ 0.515 L Ge²+ 0.350 Sn²+ 0.441 Pb²+ 0.468 Ca²+ 0.418 Sr²+ 0.536 Tm²+ 0.432 Sm²+ 0.505 Yb²+ 0.432 Sm²+ 0.505 Yb²+ 0.423 Dy²+ 0.441	Tm ²⁺	0.474
Yb²+ 0.449 Dy²+ 0.515 L	Sm ²⁺	0.439
Dy²* 0.515 L	Yb ²⁺	0.449
L Ge ²⁺ 0.350 Sn ²⁺ 0.441 Pb ²⁺ 0.468 Ca ²⁺ 0.418 Sr ²⁺ 0.536 Tm ²⁺ 0.432 Sm ²⁺ 0.505 Yb ²⁺ 0.423 Dy ²⁺ 0.441	Dy ²⁺	0.515
L Ge ²⁺ 0.350 Sn ²⁺ 0.441 Pb ²⁺ 0.468 Ca ²⁺ 0.418 Sr ²⁺ 0.536 Tm ²⁺ 0.432 Sm ²⁺ 0.505 Yb ²⁺ 0.423 Dy ²⁺ 0.441		
Ge ²⁺ 0.350 Sn ²⁺ 0.441 Pb ²⁺ 0.468 Ca ²⁺ 0.418 Sr ²⁺ 0.536 Tm ²⁺ 0.432 Sm ²⁺ 0.505 Yb ²⁺ 0.423 Dy ²⁺ 0.441	Ľ	
Sn ²⁺ 0.441 Pb ²⁺ 0.468 Ca ²⁺ 0.418 Sr ²⁺ 0.536 Tm ²⁺ 0.432 Sm ²⁺ 0.505 Yb ²⁺ 0.423 Dy ²⁺ 0.441	Ge ²⁺	0.350
Pb2+ 0.468 Ca2+ 0.418 Sr2+ 0.536 Tm2+ 0.432 Sm2+ 0.505 Yb2+ 0.423 Dy2+ 0.441	Sn ²⁺	0.441
Ca ²⁺ 0.418 Sr ²⁺ 0.536 Tm ²⁺ 0.432 Sm ²⁺ 0.505 Yb ²⁺ 0.423 Dy ²⁺ 0.441	Pb ²⁺	0.468
Sr ²⁺ 0.536 Tm ²⁺ 0.432 Sm ²⁺ 0.505 Yb ²⁺ 0.423 Dy ²⁺ 0.441	Ca ²⁺	0.418
Tm ²⁺ 0.432 Sm ²⁺ 0.505 Yb ²⁺ 0.423 Dy ²⁺ 0.441	Sr ²⁺	0.536
Sm ²⁺ 0.505 Yb ²⁺ 0.423 Dy ²⁺ 0.441	Tm ²⁺	0.432
Yb²+ 0.423 Dy²+ 0.441	Sm ²⁺	0.505
Dy ²⁺ 0.441	Yb ²⁺	0.423
	Dy ²⁺	0.441

Table S2 Revised octahedral factors of 27 BX₃ permutation.

Table S3 Revised B²⁺ metal cation radii from Ref. 50 (Shannon radii used when colored in light blue!)

Shannon radius \rightarrow X.XX			
r(M ²⁺) revised	Cl-	Br [.]	ŀ
Ge ²⁺	0.73	0.73	0.77
Sn ²⁺	1.15	1.15	0.97
Pb ²⁺	0.99	0.98	1.03
Ca ²⁺	0.92	0.91	0.92
Sr ²⁺	1.16	1.16	1.18
Tm ²⁺	0.93	0.93	0.95
Sm ²⁺	1.02	0.86	1.11
Yb ²⁺	0.86	0.88	0.93
Dy ²⁺	1.07	1.01	0.97

Table S4 Experimental radii of the three investigated halide anions

<i>r</i> (X⁻) experi	mental
r(Cl⁻)	1.85
<i>r</i> (Br ⁻)	1.96
<i>r</i> (ŀ)	2.20

Table S5 Proposed 106 ABX₃ combinations showing appropriate tolerance factors (0.9 < TF < 1.12) and octahedral factors ($\mu > 0.414$) to allow for 3D perovskite formation. AZSnI₃ and AZDyI₃ exceed the *TF*-range but are geometrically considered to allow the formation of three-dimensional perovskite bulk phases.

_				
	Compound	TF	Compound	TF
	HYSrCl3	0.951	DiMASml3	1.102
Γ	HASrCl3	0.966	EASmI3	1.109
	MASrCl3	0.994	AASml3	1.111
	FASrCl3	1.085	TetraMASmI3	1.113
	GUASrCl3	1.092	IMSmI3	1.117
	AZSrCl3	1.102	TriMASmI3	1.119
	HYSnCl3	0.955	NH4TmCl3	0.902
	HASnCl3	0.969	HYTmCl3	1.030
	FASnCl3	1.089	HATmCl3	1.045
	AZSnCl3	1.105	MATmCl3	1.076
	HYSrBr3	0.943	HAPbBr3	1.015
	HASrBr3	0.956	HYCaCl3	1.034
	MASrBr3	0.984	HACaCl3	1.049
	FASrBr3	1.071	MACaCl3	1.080
L	GUASrBr3	1.079	HYTmBr3	1.018
L	AZSrBr3	1.088	HATmBr3	1.033
L	DiMASrBr3	1.115	MATmBr3	1.062
L	HYSnBr3	0.946	AZPbI3	1.103
	HASnBr3	0.959	NH4YbCl3	0.925
	FASnBr3	1.075	HYYbCl3	1.057
L	GUASnBr3	1.082	HAYbCl3	1.072
L	AZSnBr3	1.091	MAYbCl3	1.104
L	DiMASnBr3	1.119	NH4CaBr3	0.900
	HYDyCl3	0.981	HYCaBr3	1.025
	HADyCl3	0.995	HACaBr3	1.040
L	MADyCl3	1.024	MACaBr3	1.069
L	FADyCl3	1.119	NH4YbBr3	0.910
L	HYSmCl3	0.998	HYYbBr3	1.036
L	HASmCl3	1.013	HAYbBr3	1.051
	MASmCl3	1.042	MAYbBr3	1.081
L	HYSrI3	0.920	HYDyl3	0.981
	HASrl3	0.933	HADyl3	0.995
L	FASrI3	1.040	MADyI3	1.022
L	GUASrI3	1.046	FADyI3	1.109
L	AZSrI3	1.054	GUADyl3	1.115
L	DIMASrI3	1.080	NH4SmBr3	0.916
	EASr13	1.086	HYSmBr3	1.043
L	AASrI3	1.088	HASmBr3	1.058
L	TetraMASrI3	1.090	MASmBr3	1.088
L	IMSrI3	1.094	HYIMI3	0.988
L	I rIMASrI3	1.096	HA (ml3	1.001
L	ISOPASrI3	1.103	MA fml3	1.028
L	HYPbCl3	1.008	FA I'ml3	1.116
L	HAPbCl3	1.023	HYYbI3	0.994
L	HYDyBr3	0.990	HAYbI3	1.008
	HADyBr3	1.005	MAYbI3	1.035

MADyBr3	1.033	HYCal3	0.997
HYSml3	0.940	HACal3	1.011
HASmI3	0.953	HYSnl3	0.981
MASmI3	0.978	HASnI3	0.995
FASmI3	1.062	GUASnI3	1.115
GUASmI3	1.068	AZSnI3	1.124
AZSmI3	1.077	AZDyl3	1.124
	•		