Electronic Supplementary Information (ESI)

A unique delaminated MoS4/OS-LEuH composite exhibiting turn-on luminescence sensing for detection of water in formamide

Linxia Xie,^a Chenyu Liu, ^a Lijiao Ma, ^a Chengliang Xiao,^b Shulan Ma,^{a,*} Genban Sun,^a Huifeng Li,^a Xiaojing Yang^a

^a Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China. Fax: 86 10 5880 2075; Tel: 86 10 5880 7524; E-mail: mashulan@bnu.edu.cn

^b School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China

Experimental details.

Preparation of NO₃-LEuH precursor by homogeneous method. The NO₃-LEuH precursor was prepared *via* a homogeneous precipitation method under a hydrothermal condition. Firstly, 0.446 g Eu(NO₃)₃·6H₂O (1 mmol), 1.105 g NaNO₃ (13 mmol), and 0.140 g hexamethylenetetramine (HMT, 1 mmol) were dissolved in deionized water (80 mL). Then, the aqueous solution at 90 °C for 12 h was heated in a Teflon-autoclave (100 mL). Finally, the obtained product was filtered, washed with deionized water and ethanol, and then vacuum-dried at 40 °C for 6 h.

Co-intercalation of MoS₄²⁻ and 1-octane sulfonate (OS⁻) into LEuH by an ion-

exchange method. The intercalation reactions of MoS_4^{2-} and/or OS^- into LEuH were achieved by ion-exchange method using the NO₃-LDH as a precursor, and two composites of OS-LEuH and MoS_4/OS -LEuH were obtained eventually.

Synthesis of OS-LEuH composite. A suspension containing the 0.100 g NO₃-LEuH and 0.649 g of OS (3 mmol) in deionized water of 80 mL was heated at 70 °C for 24 h in a Teflon-autoclave (100 mL). Then, the obtained white-color product was filtered, washed with deionized water and ethanol, and vacuum-dried (40 °C for 6 h), to obtain the OS-LEuH composite.

*Synthesis of MoS*₄*/OS-LEuH composite*. The mixture of NO₃-LEuH (0.100 g), OS (0.610 g, 2.82 mmol), and (NH₄)₂MoS₄ (0.047 g, 0.18 mmol) (the molar ratio of OS $^-$ /MoS₄²⁻ was 94:6) was dispersed in deionized water of 80 mL, then the formed suspension was heated at 70 °C for 24 h in a Teflon-autoclave (100 mL). Similarly, the light-brown precipitate was filtered, washed with deionized water and ethanol, then vacuum-dried (40 °C for 6 h), thus the MoS₄/OS-LEuH composite was prepared.

Delamination of OS-LEuH and MoS₄/OS-LEuH.

Pure formamide (FM) system. 0.02 g of the composite powders were dispersed respectively into 10 mL FM, followed by mechanical shaking for 16 h, to obtain their colloidal suspensions.

FM-water system. For exploring the effect of water on luminescence behaviors, firstly, the colloidal suspensions were prepared as the method (1), and took out 1 mL of the aforementioned suspensions to mix with 3 mL deionized water.

For further study, a series of colloidal suspensions were prepared by dispersing 0.02 g of the composite into 4 mL, 6 mL, 8 mL, 10 mL, 12 mL, 14 mL, 16 mL, 18 mL and 19 mLFM with mechanical shaking for 16 h, respectively, and then mixed with 16 mL, 14 mL, 12 mL, 10 mL, 8 mL, 6 mL, 4 mL, 2 mL, and 1 mL of deionized water. The total volume of the FM-water mixture was fixed to be 20 mL.

DMF-water system. A series of colloidal suspensions were prepared by dispersing 0.02 g of the composite into 4 mL, 8 mL, 14 mL, 18 mL, 19 mL, and 20 mL N,N-dimethylformamide (DMF) with mechanical shaking for 16 h, respectively,

and then mixed with 16 mL, 12 mL, 6 mL, 2 mL, 1 mL, and 0 mL of deionized water. The total volume of the DFM-water mixture was fixed to be 20 mL.

Characterization. The powder X-ray diffraction (XRD) patterns of the NO₃-LEuH precursor and the as-prepared composites were recorded by using a Phillips X'pert Pro MPD diffractometer with Cu-K radiation at room temperature. For the large degrees, it was operated under a step size of 0.0167°, scan time of 15 seconds per step, and 20 ranging from 4.5 to 70°. The generator setting was 40 kV and 40 mA. For the small degrees, the XRD patterns were collected with a step size of 0.008°, scan time of 30 seconds per step, and 20 ranging from 0.6 to 6°. Fourier transformed infrared (FT-IR) spectra of the samples were recorded on a Nicolet-360 Fourier-Transform infrared spectrometer using the KBr method. Scanning electron microscope (SEM) observations were conducted via a Hitachi S-4800 microscope. The metal ion concentrations were measured by ICP-AES (Jarrel-ASH, ICAP-9000) after the solid products were dissolved in a ~0.1 M HNO₃ solution. CHN analysis was carried out by using an Elementar vario EL elemental analyzer. The photoluminescence spectra were measured at room temperature with a FS5 fluorescence spectroscopy. The UV-vis adsorption spectra were obtained at room temperature on a UV-2450 spectrophotometer.

		wt%, found (calcd)				
Samples	Chemical formula	Eu	Мо	С	Н	N
NO3–LEuH	Eu(OH) _{2.41} (NO ₃) _{0.49} (CO ₃) _{0.05} ·0.8H ₂ O	62.10 (62.50)	-	0.28 (0.25)	1.61 (1.73)	2.71 (2.83)
OS-LEuH	$Eu(OH)_{2.41}(C_8H_{17}O_3S)_{0.64}NO_3)_{0.01}$ $\cdot 0.8H_2O$	44.72 (45.88)	-	18.05 (18.52)	4.13 (4.49)	0.04 (0.04)
MoS ₄ /OS-LEuH	Eu(OH) _{2.41} (OS) _{0.48} (MoS ₄) _{0.05} (NO ₃) _{0.02} ·1.8H ₂ O	44.25 (45.84)	1.54 (1.60)	13.74 (13.90)	3.91 (4.27)	0.08 (0.08)

Table S1. Chemical compositions for the NO₃-LEuH precursor and the MoS₄/OS-LEuH composites.

Fig. S1 XRD patterns of composites with OS $^-$ /MoS₄²⁻ molar ratios of (a) 0.98:0.02, (b) 0.94:0.06, (c) 0.90:0.10, and (d) 0.80:0.20. The *d*-values in XRD patterns were given in nanometers.

Fig. S2 SEM images of NO₃-LEuH precursor (a, b), and the composites of OS-LEuH (c, d), and MoS₄/OS-LEuH (e, f), respectively.

Fig. S3 Photoluminescence emission spectra of colloidal suspensions of composites with OS^{-}/MoS_{4}^{2-} molar ratios of (a) 0.98:0.02, (b) 0.94:0.06, (c) 0.90:0.10, and (d) 0.80:0.20 ($\lambda_{ex} = 395$ nm) in pure formamide.

Fig. S4 Photographs of the formed suspensions after dispersing 0.02 g MoS₄/OS-LEuH powder into 20 mL of (a) DMF, (b) ethanol, (c) acetonitrile, and (d) acetone, respectively, for 16 h.

Fig. S5 Photoluminescence (A) excitation and emission (B) spectra of colloidal suspensions of MoS₄/OS-LEuH in DMF+H₂O (*x* is volume percentages of water): (a) x = 0 ($\lambda_{ex} = 395$ nm), (b) x = 5 % ($\lambda_{ex} = 278$ nm), (c) 10 % ($\lambda_{ex} = 274$ nm), (d) 30 % ($\lambda_{ex} = 271$ nm), (e) 60 % ($\lambda_{ex} = 267$ nm), (f) 80 % ($\lambda_{ex} = 265$ nm). Plots show the functions of emission intensity (C) and maximum excitation wavelength (D) following the water content (v %).

Fig. S6 (A) Liquid IR spectra of MoS_4^{2-} in FM/H₂O (5 mg (NH₄)₂MoS₄ was dissolved in 25 mL FM and 75 mL H₂O). (B) UV-Vis absorption spectra of MoS_4^{2-} : (a) in pure FM ($\lambda_{1,a} = 266$ nm), and in FM/H₂O system with H₂O v% of (b) 20% ($\lambda_{1,b} = 261$ nm, 5 mg (NH₄)₂MoS₄ was dissolved in 80mL FM and 20 mL H₂O), (c) 60% ($\lambda_{1,c} = 254$ nm, 5 mg (NH₄)₂MoS₄ in 40mL FM and 60 mL H₂O), and (d) 80% ($\lambda_{1,d} = 250$ nm, 5 mg (NH₄)₂MoS₄ in 20mL FM and 80 mL H₂O).