Supporting Information

Al-based coordination polymer nanotubes: Simple preparation,

post-modification and application in Fe³⁺ ions sensing

Xiaoyao Dao and Yonghong Ni*

College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University. 1 Beijing Eastern Road, Wuhu, 241000, PR China. Fax: +86-553-3869303. E-mail: niyh@mail.ahnu.edu.cn

Figure S1. SEM image of MIL-110(Al) nanotubes before activation.

Figure S2. XRD patterns of MIL-110(Al) nanotubes before and after activation, and simulated MIL-110(Al). The inset is the EDS analysis of MIL-110(Al) nanotubes.

Figure S3. FT-IR spectra of the products before and after activating at 130 °C.

Figure S4. XRD patterns of the products obtained from various solvents: (a) pure methanol, (b) pure ethanol, (c) DMF-ethanol with the volume ratio of 10/10, (d) isopropanol-ethanol with the

volume ratio of 10/10 and (e) water-ethanol with the volume ratio of 10/10.

Figure S5. EDS analyses of MIL-110(Al)/Ln³⁺ and corresponding SEM images: (a) MIL-110(Al)/Eu³⁺, (b) MIL-110(Al)/Eu³⁺, Tb³⁺ and (c) MIL-110(Al)/Tb³⁺.

Figure S6. (a) XRD patterns and (b) N₂ adsorption-desorption isotherms (at 77 K) of the MIL-

 $110(Al)/Ln^{3+}$ (Ln = Eu, Tb and Eu/Tb).

Figure S7. The FT-IR spectra of various products: (a) MIL-110(Al), (b) MIL-110(Al)/Eu³⁺, (c) MIL-110(Al)/Tb³⁺, and (d) MIL-110(Al)/Eu³⁺, Tb³⁺.

Figure S8. Luminescence intensity histograms of MIL-110(Al)/Tb³⁺ nanotubes dispersed into aqueous solutions of 2.0×10^{-2} mol·L⁻¹ Fe²⁺ ions for various durations.

As shown in **Fig.S8**, under the same experimental conditions Fe^{2+} ions cannot fully quench the luminescence of MIL-110(Al)/Tb³⁺ nanotubes. With the prolonging of the time from 0 to 48 h, the luminescent intensity further reduces, but it is still higher than that after introducing Fe³⁺ ions. We believe that the decrease of the PL intensity should be ascribed to the increase of Fe³⁺ concentration in the solution due to the gradual oxidation of Fe²⁺ ions in air. Therefore, pure O₂ was injected the solution of Fe²⁺ ions after having been placed for 48 h. The result showed that the luminescence of MIL-110(Al)/Tb was quenched immediately. The above fact clearly shows that Fe²⁺ ions do not disturb the detection of Fe³⁺ ions in the current work.

Figure S9. EDS analysis of the sample after the luminescent quenching by Fe^{3+} ions

analyzed by the ICP technology. Sample Al(ppm) Tb(ppm) Eu(ppm) Al/Ln molar ratio MIL-110(Al)/Tb³⁺ / 40.84 17.79 13.5/1 MIL-110(Al)/Eu³⁺ / 6.75 34.8/1 41.73 MIL-110(Al)/Eu³⁺,Tb³⁺ 39.83 5.08 3.51 63.9/1.4/1

Table S1. The contents of various metal ions in MIL-110(Al)/Ln³⁺ (Ln = Tb³⁺, Eu³⁺, Eu³⁺/Tb³⁺) analyzed by the ICP technology.

Table S2. The contents of various metal ions in MIL-110(Al) samples after exposure to target metal

Sample	Al(ppm)	Tb(ppm)	M ⁿ⁺ (ppm)	Al:Tb:M ⁿ⁺ molar ratio
MIL-110(Al)/Tb ³⁺ /K ⁺	41.22	17.79	4.93	13.51:1:1.125
MIL-110(Al)/Tb ³⁺ /Fe ³⁺	34.58	0.18	22.50	1131:1:361