Bifunctional Colorimetric Chemosensing of Fluoride and Cyanide Ions by Nickel-POCOP Pincer Receptors

María K. Salomón-Flores,^a Iván J. Bazany-Rodríguez,^a Diego Martínez-Otero,^a Marco A. García-Eleno,^b Jorge J. Guerra-García,^b David Morales-Morales,^{b*} Alejandro Dorazco-González^{a*}

^aCentro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, C. P. 50200, Toluca, Estado de México, México. Instituto de Química, Universidad Nacional Autónoma de México.

^bInstituto de Química, Universidad Nacional Autónoma de México, Coyoacán 04510 México D.F., México. *Corresponding authors: <u>adg@unam.mx; damor@unam.mx</u>.

Supporting Information

 Table S1. Crystallographic data for bromo complex of 1.

Figure S1. Spectrophotometric spectra of 1 in several organic solvents at 20 °C.

Figure S2. Color change of 2 and 3 solutions with the addition of sodium salts of various anions.

Figure S3. ¹H NMR spectrum in CD₃CN of 1.

Figure S4. ¹H NMR spectrum in CD₃CN of 2.

Figure S5. ¹H NMR spectrum in CD₃CN of **3**.

Figure S6. ORTEP diagram at 50% of probability for mixture of complex 1-Br and I-Cl.

Figure S7. ORTEP diagram at 50% of probability for mixture of complex 1-Cl and I-CN.

Figure S8. UV-vis spectra changes of **2** (50 μ M) in buffered aqueous solution containing 80 vol% CH₃CN (40 mM, MOPS at pH 7.0) by NaCN.

Figure S9. UV-vis spectra changes of **3** (50 μ M) in buffered aqueous solution containing 80 vol% CH₃CN (40 mM, MOPS at pH 7.0) by NaCN.

Figure S10. Spacefill model for cyanide complex 1.CN.

Figure S11. ³¹P NMR spectrum in CD₃CN of 1-Br.

Figure S12. ³¹P NMR spectrum in CD₃CN of 1-CN.

Figure S13. ¹H NMR spectrum in CD₃CN of 1-Br

Figure S14. ¹H NMR spectrum in CD₃CN of 1-CN.

 Table S1 Crystallographic data for the neutral bromo complex of 1.

Empirical formula	$C_{30}H_{23}Br_{0.69}Cl_{0.31}NiO_3P_2$
Mol. Weight / g mol ⁻¹	618.14
Crystal size / mm ³	0.201 x 0.164 x 0.156
Crystal system	Monoclinic
Space group	P21/n
<i>a</i> / Å	16.4872(4)
b/Å	10.6284(2)
c / Å	16.6583(4)
α/°	90
β/°	118.3130(8)
γl°	90
Volume / ų	2569.87(10)
Z	4
Density / g cm ⁻³	1.598
Temperature / K	100(2)
Absorption Coeff. / mm ⁻¹	2.013
Θ range / °	2.367 to 27.443
Index ranges	
Reflections collected	23685
Absorption corrrection	Multi-scan
Max. & min. transmission	0.7456, 0.6542
Data / restraints / param.	5861/3/341
Goodness-of-fit on F ²	1.037
Final R indices [I > 2 s (I)]	R1 = 0.0297 wR2 = 0.0675
R indices (all data)	R1 = 0.0380 wR2 = 0.0708
Larg. diff. peak/hole / eÅ ⁻³	0.533 and -0.295

Figure S1. UV-vis absorption spectra of 1-3 (50 μ M) in CH₃CN (top) and spectrophotometric spectra of 1 in several organic solvents at 20 °C (bottom).

Figure S2. Color change of 1 and 2 (50 μ M) in CH₃CN (containing 20 % v/v H₂O) solutions with the addition of 3.0 equiv. of sodium salts of various anions. 2 and 3 = neutral chloro-complex,

Figure S3. ¹H NMR spectrum in CD_3CN of 1.

Figure S4. ¹H NMR spectrum in CD₃CN of 2.

Figure S5. ¹H NMR spectrum in CD_3CN of 3.

Figure S6. ORTEP diagram at 50% of probability for neutral complex 1. Two complexes (bromo complex 68.6(2)% and chloro complex 31.4(2) %) are found in the unit cell. The chlorine atom is shown in phantom for clarity.

Figure S7. ORTEP diagram at 50% of probability for cyanide complex 1.CN. Two complexes (chloro complex 83(1)% and cyanide complex 17(1)%) are found in the unit cell, the chlorine atom is shown in phantom for clarity.

Figure S8. UV-vis spectra changes of **2** (50 μ M) in CH₃CN observed upon the addition of 0-2.0 equiv. of NaCN.

Figure S9. UV-vis spectra changes of **3** (50 μ M) in CH₃CN observed upon the addition of 0-2.0 equiv. of NaCN.

-144.23

Figure S10. Spacefill model for cyanide complex 1.CN.

Figure S11. ³¹P NMR (121.65 MHz) spectrum in CD_3CN of 1-Br.

Figure S13. ¹H NMR spectrum in CD₃CN of 1-Br.

Figure S14. ¹H NMR spectrum in CD₃CN of 1-CN.