

Dalton Transactions

Supporting information

Small molecule activation: SbF₃ auto-ionization supported by transfer and mesoionic NHC rearrangement

B. Alič,^{a, b} A. Štefančič^{a, b} and G. Tavčar^{a, b, *}

^{a.} Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

^{b.} Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia

Contents

[(L ^{Dipp})	H]⁺[SbF₄]⁻ (1)	3
¹ F	H NMR spectrum of [(L ^{Dipp})H]⁺[SbF₄] [−] in CD₃CN, Frequency (MHz) 302.97:	4
19	¹ F NMR spectrum of [(L ^{Dipp})H] ⁺ [SbF₄] [−] in CD₃CN, Frequency (MHz) 285.05:	5
13	^t C NMR spectrum of [(L ^{Dipp})H]⁺[SbF₄] [–] in CD₃CN, Frequency (MHz) 76.19:	6
Ra	aman spetra of [(L ^{Dipp})H] ⁺ [SbF ₄] ⁻ (1)	7
Su	uperimposed spectra of reaction (L^{Dipp}) + SbF ₃ -> [(L^{Dipp})H] ⁺ [SbF ₄] ⁻ (1) performed in CH ₃ CN <i>vs.</i> CD ₃ CN	8
[SbF₃(t	men)] (2)	9
¹ H	H NMR spectrum of [SbF₃(tmen)] complex in THF-d ⁸ , Frequency (MHz) 302.97:	.0
19	⁹ F NMR spectrum of [SbF₃(tmen)] complex in THF-d ⁸ , Frequency (MHz) 285.05:	.1
¹ H	H NMR spectrum of [SbF₃(tmen)] complex in C₅D₅, Frequency (MHz) 302.97:	.2
19	F NMR spectrum of [SbF₃(tmen)] complex in C₅D₅, Frequency (MHz) 285.05: 1	.3
Ra	aman spectra of [SbF₃(tmen)] (2)1	.4
[(L ^{Dipp})S	SbF₃] (3)	5
¹ H	H NMR spectrum for reaction "[SbF ₃ (tmen)] + (L ^{Dipp}) \rightarrow [(L ^{Dipp})SbF ₃]" in C ₆ D ₆ , Frequency (MHz) 302.97: 1	.6
19	F NMR spectrum for reaction "[SbF ₃ (tmen)] + (L^{Dipp}) -> [(L^{Dipp})SbF ₃]" in C ₆ D ₆ , Frequency (MHz) 285.05: 1	.7
13	ⁱ C NMR spectrum for reaction "[SbF ₃ (tmen)]+ (L ^{Dipp}) \rightarrow [(L ^{Dipp})SbF ₃]" in C ₆ D ₆ , Frequency (MHz) 76.19: 1	.8
¹ H	−> [(L^{Dipp})SbF ₃]" in C ₆ D ₆ , Frequency (MHz) 302.97: 1	.9
19	² F NMR spectrum for reaction "[SbF ₃ (tmen)] + (L ^{Dipp}) + 2tmen −> [(L ^{Dipp})SbF ₃]" in C ₆ D ₆ , Frequency (MHz) 285.05: 2	0
¹ H	H NMR spectrum for reaction "SbF ₃ + (L^{Dipp}) + 2dme -> [(L^{Dipp})SbF ₃]" in C ₆ D ₆ , Frequency (MHz) 302.97: 2	1
19	F NMR spectrum for reaction "SbF ₃ + (L ^{Dipp}) + 2dme -> [(L ^{Dipp})SbF ₃]" in C ₆ D ₆ , Frequency (MHz) 285.05: 2	2
[(L ^{Dipp}) ₂	₂SbF₂]⁺[SbF₄]⁻ (4) 2	3
Ra	aman spectra of [(L ^{Dipp}) ₂ SbF ₂] ⁺ [SbF ₄] ⁻ (4)	4
[(Cl ₂ L ^{Dip}	^{pp})H]⁺[SbF₄]⁻ (5)	5
¹ H	H NMR spectrum of [(Cl ₂ L ^{Dipp})H] ⁺ [SbF ₄] ⁻ in THF-d ⁸ , Frequency (MHz) 302.97:	6
19	⁹ F NMR spectrum of [(Cl₂L ^{Dipp})H] ⁺ [SbF₄] [−] in THF-d ⁸ , Frequency (MHz) 285.05:	27
¹ H	H NMR spectrum of [(Cl₂L ^{Dipp})H] ⁺ [SbF₄] [−] in C₀D₀, Frequency (MHz) 302.97:	8
Ra	aman spectra of [(Cl ₂ L ^{Dipp})H] ⁺ [SbF ₄] ⁻ (5)	9
CSD sea	arch details3	0

$[(L^{Dipp})H]^{+}[SbF_{4}]^{-}(1)$

Reaction "[SbF₃(tmen)] + $(L^{Dipp}) \rightarrow [(L^{Dipp})H]^+[SbF_4]^-$ ":

¹H NMR spectrum CD₃CN
¹⁹F spectrum NMR CD₃CN
¹³C spectrum NMR CD₃CN
Raman spectrum
Superimposed spectra of reaction (L^{Dipp}) + SbF₃ -> [(L^{Dipp})H]⁺[SbF₄]⁻ (1) performed in CH₃CN *vs.* CD₃CN

¹H NMR spectrum of [(L^{Dipp})H]⁺[SbF₄]⁻ in CD₃CN, Frequency (MHz) 302.97:

Raman spetra of $[(L^{Dipp})H]^+[SbF_4]^-(1)$

Superimposed spectra of reaction $(L^{Dipp}) + SbF_3 \rightarrow [(L^{Dipp})H]^+[SbF_4]^- (1)$ performed in CH_3CN vs. CD_3CN

Figure 1: Superimposed spectra of reaction "SbF₃ + (L^{Dipp})" performed in CH₃CN vs. CD₃CN. Reaction in CH₃CN (**blue**) shows all imidazolium peaks for protons (e) and (b) while reaction in CD₃CN (**green**) shows no imidazolium peaks, showing: **a**) proton (e) arrises from solvent molecule and **b**) all three imidazolium protons (e) and (b) undergo H/D exchange with deuterated solvent. **Red** spectra, for comparison, represents isolated product of $[(L^{Dipp})H]^+[SbF_4]^-(1)$

[SbF₃(tmen)] (2)

Reaction "SbF₃ + 3tmen + -> [SbF₃(tmen)]":

¹H NMR spectrum in THF-d⁸ ¹⁹F NMR spectrum in THF-d⁸ ¹H NMR spectrum in C₆D₆ ¹⁹F NMR spectrum in C₆D₆ Raman spectrum

¹H NMR spectrum of [SbF₃(tmen)] complex in THF-d⁸, Frequency (MHz) 302.97:

¹⁹F NMR spectrum of [SbF₃(tmen)] complex in THF-d⁸, Frequency (MHz) 285.05:

¹H NMR spectrum of [SbF₃(tmen)] complex in C₆D₆, Frequency (MHz) 302.97:

¹⁹F NMR spectrum of [SbF₃(tmen)] complex in C₆D₆, Frequency (MHz) 285.05:

[(L^{Dipp})SbF₃] (3)

Reaction "[SbF₃(tmen)] + (L^{Dipp}) -> [(L^{Dipp})SbF₃]":

 ^1H NMR spectrum in C_6D_6

 $^{\rm 19}{\rm F}$ NMR spectrum in $C_6 D_6$

 $^{\rm 13}C$ NMR spectrum in C_6D_6

Reaction "[SbF₃(tmen)] + (L^{Dipp}) +2tmen -> [(L^{Dipp})SbF₃]":

 ^1H NMR spectrum in C_6D_6

Reaction "SbF₃ + (L^{Dipp}) + 2dme -> [(L^{Dipp})SbF₃]":

 ^1H NMR spectrum in C_6D_6

 $^{19}\mathsf{F}\ \mathsf{NMR}\ \mathsf{spectrum}\ \mathsf{in}\ \mathsf{C}_6\mathsf{D}_6$

¹H NMR spectrum for reaction "[SbF₃(tmen)] + (L^{Dipp}) -> [(L^{Dipp})SbF₃]" in C₆D₆, Frequency (MHz) 302.97:

¹⁹F NMR spectrum for reaction "[SbF₃(tmen)] + (L^{Dipp}) -> [(L^{Dipp})SbF₃]" in C₆D₆, Frequency (MHz) 285.05:

¹³C NMR spectrum for reaction "[SbF₃(tmen)]+ (L^{Dipp}) -> [(L^{Dipp})SbF₃]" in C₆D₆, Frequency (MHz) 76.19:

¹H NMR spectrum for reaction "[SbF₃(tmen)] + (L^{Dipp}) + 2tmen -> [(L^{Dipp})SbF₃]" in C₆D₆, Frequency (MHz) 302.97:

¹⁹F NMR spectrum for reaction "[SbF₃(tmen)] + (L^{Dipp}) + 2tmen -> [(L^{Dipp})SbF₃]" in C₆D₆, Frequency (MHz) 285.05:

¹H NMR spectrum for reaction "SbF₃ + (L^{Dipp}) + 2dme -> [(L^{Dipp})SbF₃]" in C₆D₆, Frequency (MHz) 302.97:

¹⁹F NMR spectrum for reaction "SbF₃ + (L^{Dipp}) + 2dme -> [(L^{Dipp})SbF₃]" in C₆D₆, Frequency (MHz) 285.05:

$[(L^{Dipp})_2SbF_2]^+[SbF_4]^-(4)$

Raman spectrum

or

Reaction: "[SbF₃(tmen)] + (L^{Dipp}) -> [(L^{Dipp})₂SbF₂]⁺[SbF₄]⁻"

"SbF₃ + 2dme + $(L^{Dipp}) \rightarrow [(L^{Dipp})_2SbF_2]^+[SbF_4]^-$ "

$[(Cl_2L^{Dipp})H]^+[SbF_4]^-(5)$

 1 H NMR spectrum in THF-d^8 $$^{19}{\rm F}$$ NMR spectrum in THF-d^8 $$^{1}{\rm H}$$ NMR spectrum in C_6D_6 – empty, no other product could be obtained. Raman spectra

¹H NMR spectrum of [(Cl₂L^{Dipp})H]⁺[SbF₄]⁻ in THF-d⁸, Frequency (MHz) 302.97:

¹⁹F NMR spectrum of [(Cl₂L^{Dipp})H]⁺[SbF₄]⁻ in THF-d⁸, Frequency (MHz) 285.05:

¹H NMR spectrum of [(Cl₂L^{Dipp})H]⁺[SbF₄]⁻ in C₆D₆, Frequency (MHz) 302.97:

CSD search details

Cambridge Structural Database¹ was used for search of existing structures. Search was performed in the following way using CCDC Con-Quest Version 1.18 (Built RC1).²

Table 1: Number of structures with different number of bonded atoms (n) for MF compounds

n	number of crystal structures found
2	9
3	1
4	29
5	12
6	44
7	0
SUM	95

----- any bond

— single bond

- QA all elements of periodic table except: C, N, O, S
- n number of bonded atoms
- χ any element of periodic table
- * for MF compounds X = F

- 1. C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, *Acta Crystallog. Sec. B*, 2016, **72**, 171.
- I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, *Acta Crystallogr. Sec. B*, 2002, 58, 389.