Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2016

Comparison of H₂ Photogeneration by [FeFe]-Hydrogenase Mimics

with CdSe QDs and Ru(bpy)₃Cl₂ in Aqueous Solution

Jing-Xin Jian[†], Chen Ye[†], Xu-Zhe Wang, Min Wen, Zhi-Jun Li, Xu-Bing Li, Bin Chen, Chen-Ho Tung and Li-Zhu Wu*

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & Graduate University, the Chinese Academy of Sciences, Beijing 100190, P. R. China. E-mail: <u>lzwu@mail.ipc.ac.cn</u>.

Table of Contents

- 1. Instruments and materials
- 2. ESI-MS spectrum of 1 and 2
- 3. Absorption and emission of different size CdSe QDs
- 4. The optimization of H₂ photogeneration conditions
- 5. The absorption characteristic and water solubility of 1
- 6. HRTEM of CdSe QDs
- 7. H₂ evolution without [FeFe]-H₂ase mimics
- 8. Cyclic voltammetry of 1 and 2
- 9. Emission quenching of Ru(bpy)₃Cl₂ by 1 and 2
- 10. Transient absorption and kinetics recovery of Ru(bpy)₃Cl₂ systems
- 11. Emission quenching of CdSe QDs by 1 and 2
- 12. Transient absorption of CdSe QDs
- 13. Spectroelectrochemical absorption spectra of [FeFe]-H₂ase mimics and TFA
- 14. Emission quenching of CdSe QDs by NaHA

1. Instruments and materials

Materials All chemicals were obtained from commercial suppliers and used without further purification

unless otherwise noted.

Instruments Infrared spectra were recorded on a Nicolet NEXUS 670 FT-IR spectrophotometer. The UV-vis absorption spectra were recorded using a Shimadzu 1601 PC spectrophotometer. ¹H-NMR spectra were run on a Bruker-400 spectrometer with tetramethylsilane (1H) as an internal standard. MS was performed on a Bruker APEX III 7.0 Tesla FTICR Mass spectrometer combined with Apollo ESI source. Elemental analyses were determined on a FLASH EA1112 elemental analyzer. Electrochemical investigation was studied on a Princeton Applied Research Potentionstat-gravanostat model 283. Cyclic voltammetry experiments were obtained using a standard three electrode cell under argon at room temperature with a glassy carbon working electrode and a platinum wire auxiliary electrode. For aqueous system, saturated calomel electrode (SCE) was used as the reference electrode, and the supporting electrolyte solution was 0.1 M NaCl. All redox potentials are reported relative to the SCE and then adjusted to normal hydrogen electrode (NHE). Between each scan the glassy carbon electrode was removed and polished using a 0.05 µm polycrystalline diamond suspension and rinsed with both acetone and deionized water to remove any adsorbed material. All samples were run at a concentration of 1.0 mM.

2. ESI-MS spectrum of 1 and 2.

JianJingxin-2 RT: 0.10-0.12 AV: 3NL: 7.36E8 T: FTMS - p ESI Full ms [50.00-750.00]

Fig. S1 ESI-MS spectrum of 1 (a) and 2 (b) in aqueous solution, and the supposed dissociation particles.

3. Absorption and emission of different size CdSe QDs

Fig. S2 The absorption spectra (**a**) and photoluminescence spectra (**b**) of different size CdSe QDs, the primary concentration of Cd^{2+} was 1.0 mM.

4. The optimization of H₂ photogeneration conditions.

Fig. S3 Photocatalytic H₂ evolution at various pH values with **1** (1.00 μ M), CdSe QDs (2.08 μ M) and H₂A (0.10 M) in aqueous solution (**a**); H₂ evolution as function of CdSe concentration with **1** (1.00 μ M) and H₂A (0.10 M) at pH 4.0 (**b**); H₂ evolution as function of H₂A concentration with **1** (1.00 μ M) and CdSe (5.20 μ M) at pH 4.0 (**c**).

5. The absorption characteristic and water solubility of 1.

Fig. S4 The UV-vis absorption spectra of **1** in aqueous solution (**a**) and the standard solubility curve of **1** recorded at 334 nm (**b**).

6. HRTEM of CdSe QDs.

Fig. S5 High-resolution transmission electron microscopy image of MPA-CdSe QDs (bar scale, 5 nm).

7. H₂ evolution without [FeFe]-H₂ase mimics.

Fig. S6 Photocatalytic H₂ evolution of $Ru(bpy)_3^{2+}$ (0.10 mM) and H₂A (0.20 M) at pH 4.0 (**a**); photocatalytic H₂ evolution of CdSe QDs (2.08 μ M) and H₂A (0.20 M) at pH 4.0 (**b**).

8. Cyclic voltammetry of 1 and 2.

Fig. S7 Cyclic voltammetry of 1 (1.0 mM) and 2 (1.0 mM) in aqueous solution at scan rate of 50 mV/s.

9. Emission quenching of Ru(bpy)₃Cl₂ by 1 and 2.

Fig. S8 Emission quenching of $Ru(bpy)_3Cl_2$ (0.10 mM) with progressive addition of **1** (**a**) and **2** (**b**); the corresponding Stern-Volmer plot of $[I_0/I_P - 1]$ vs the concentration of mimics (**c**).

Fig. S9 The transient absorption of $Ru(bpy)_3Cl_2$ (0.10 mM) (a), $Ru(bpy)_3Cl_2 + H_2A$ (0.20 M) (b), $Ru(bpy)_3Cl_2 + H_2A + 1$ (0.01 mM) (c) and $Ru(bpy)_3Cl_2 + H_2A + 2$ (0.01 mM) (d) in aqueous solution at pH 4.0; the corresponding recovery kinetics of transient decay recovery monitored at 520 nm (e) and transient blenching recovery monitored at 450 nm (f) for $Ru(bpy)_3Cl_2$ (0.10 mM), H_2A (0.20 M) and [FeFe]-H₂ase mimics (0.01 mM), upon laser excitation at 430 nm.

11. Emission quenching of CdSe QDs by 1 and 2.

Fig. S10 Emission quenching of MPA-CdSe QDs (2.08 μ M) with progressive addition of **1** (**a**) and **2** (**b**); the corresponding Stern-Volmer plot of [I₀/I_P – 1] *vs* the concentration of mimics (**c**).

12. Transient absorption of CdSe QDs.

Fig. S11 Transient absorption spectra of CdSe QDs (2.08 μ M) in aqueous solution at pH 4.0.

13. Spectroelectrochemical absorption spectra of [FeFe]-H₂ase mimics and TFA.

Fig. S12 Spectroelectrochemical absorption spectra of $[Fe^{I}Fe^{0}]$ by reduction of [FeFe]-H₂ase mimics at -1.4 V relative to SCE (-1.16 V *vs* NHE): (**a**) **1** (0.1 mM); (**b**) **2** (0.1 mM); (**c**) **1** (0.1 mM) and TFA (1.0 mM); (**d**) **2** (0.1 mM) and TFA (1.0 mM).

14. Emission quenching of CdSe QDs by NaHA.

Fig. S13 The emission queching of MPA-CdSe QDs by NaHA (**a**); the corresponding Stern-Volmer plot of $[I_0/I_P - 1]$ of MPA-CdSe QDs *vs* the concentration of NaHA (**b**).