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Figure S1. Toxicity screening of fifteen ILs on Saccharomyces cerevisiae strain BY4741 at 

(A) 0.6 wt% and (B) 5 wt% IL. 
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Figure S2. Inhibition of IL concentration to the hydrolysis of microcrystalline cellulose (MCC) 

by commercial enzyme cocktails. Conditions: pretreatment, MCC 50 mg, liquid 1.5 mL, 140 ○C, 

1h; saccharification, 30 mg CTec2+HTec2 protein/g Avicel, 50 mM citric buffer, pH 5, 50 ○C, 

72 h.
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Figure S3. 13C NMR (150 MHz, DMSO-d6, 298K) spectra of [Ch][Lys] before (top) and after 
CO2 absorption (bottom). 13C NMR spectra of [Ch][Lys] shows one signal for carbonyl carbon 
(1, top spectra). Upon CO2 absorption the 13C NMR spectra of [Ch][Lys] shows four signals for 
carbonyl carbon (1-4, bottom spectra), which are indicative of different IL-H2O-
CO2 complexes.
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Figure S4. Effect of acid-induced pH adjustments on enzymatic hydrolysis of MCC. Conditions: 
MCC (50 mg), liquid 1.5 mL, [Ch][Lys] (5 wt%), 30 mg CTec2+HTec2 protein /g Avicel, 50 
mM citric buffer, pH 5.0, 50 ○C, 72 h.  
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Figure S5. Comparison of sugar yields using different concentration of [Ch][Lys] for both 
pretreatment and saccharification process. Conditions: pretreatment, 10 wt% switchgrass 
loading, 5 (10 or 20) wt% [Ch][Lys], 85 (80 or 70) wt% H2O, 140 ○C, 1h; Saccharification, 10 
mg CTec2+HTec2 protein /g SG, 50 ○C, 72 h and 1 MPa CO2.
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Yeast, 0.1 kg 
0.1 kg/kg SG (5 g/L) 

Ionic Liquid 
Pretreatment 

Simultaneous Saccharifica on 
 and Fermenta on (SFF) 

Switchgrass 
(SG) 

1.0 kg weight 

0.296 kg glucan 
0.184 kg xylan 
0.200 kg lignin 
0.320 kg others 

140℃, 3h 
10% solid loading 

[Ch][Lys] 1.0 kg Water 
8.0 kg 

IL recycle 

CTec+HTec, 10 g 
10 g/kg SG 

Liquid 

0. 286 kg dry  
residual solid 

Solids 
0.026 kg glucan 
0.011 kg xylan 
0.169 kg lignin 
0.08   kg others Water 

10.0 kg 5.0     g   glucose 
0.095 kg xylose 
0.079 kg xylose oligomers 
1.0     kg [Ch][Lys] 
0.031 kg lignin 
0.139 kg ethanol 

Ethanol production: 0.139 g ethanol/g switchgrass;  Ethanol yield: 83.3%. 

Figure S6. Overall mass balance of the integrated process using [Ch][Lys], carbon dioxide, 
commercial enzyme cocktail and wild type yeast S. cerevisiae.
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Figure S7. Simplified block flow diagram of water-wash process configuration.
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Figure S8. Simplified block flow diagram of JTherm process configuration with liquid-liquid 

extraction (LLE) to recover sugars from hydrolysate.
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Figure S9. Simplified block flow diagram of integrated CO2 process configuration.
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Figure S10. Effect of biomass and enzyme loading on glucose titer.

11



                      

368 

520 

184 

0 

200 

400 

600 

0 

5 

10 

15 

WW Jtherm Integrated CO2 

A
nn

ua
l O

pe
ra

tin
g 

C
os

t (
A

O
C

, M
$/

ye
ar

) 

M
ES

P 
($

/g
al

) 

Three different routes studied in TEA 

MESP AOC 

Figure S11. Minimum selling price (MESP) and annual operating cost (AOC) for the WW, 

JTherm, and integrated CO2 schemes.
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Figure S12. Detailed section-wide cost breakdown for the WW, JTherm, and integrated CO2 

routes. 
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Table S1. Calculated acidity of [Ch][Lys] with CO2 and water molecules and local chemical 
reactivity descriptors of terminal and side chain N atoms.

fk
-

Calculated Acidity (eV)
Terminal Side

[Ch][Lys] (H
2
O)

2 2.3 0.142 0.039
[Ch][Lys] (H

2
O) (CO

2
) (side) 2.36 0.291 0.007

[Ch][Lys] (H
2
O) (CO

2
) (ter.) 2.7 0.015 0.065

[Ch][Lys] (H
2
O)

2
 (CO

2
)
2 2.7 0.017 0.026
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Table S2. Chemical composition of dominant components in the switchgrass studied and solid 
recovery.

 Solid recovery/% Glucan /wt% Xylan/wt% Lignin/wt%

Untreated SG / 32.2±0.1 20.0±0.1 21.8±0.2

10% IL, 1h 65.8 44.7±0.7 24.0±1.2 9.2±0.2

10% IL, 3h 63.2 47.8±0.7 23.6±1.0 9.2±0.3

90% IL, 1h 45.7 62.3±0.7 24.0±0.3 6.5±0.1

Pretreatment conditions: 10% biomass loading, [Ch][Lys], H2O (0 or 80%), 140 ℃.

Table S3. Key process and economic data for the three scenarios studied in the TEA
Process configuration WWa JThermb Integrated CO2
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Biomass processed (dry MT/day) 2000 2000 2000
Biomass price ($/dry ton, delivered at plant-
gate)

80 80 80

Pretreatment
IL used [C2C1Im][OAc] [C2C1Im][OAc

]
[Ch][Lys]

IL price ($/kg)c 10 10 2
IL purity (wt% of IL in aqueous IL solution 
[IL:H2O])

90 100 13.5

Biomass loading (wt%) 20 20 20
IL recovery (%) 99.9 99.9 99.9
Water loading (mass ratio between fresh water 
and biomass in water-wash step in WW route)

20 N/A N/A

Loss of glucan in water-wash step (wt% of 
initial glucan)

5 NONE NONE

Loss of xylan in water-wash step (wt% of initial 
xylan)

24 NONE NONE

Hydrolysis
    Configuration SHF SHF SSF
     Enzyme type CTec2/HTec2 JTherm CTec2/Htec2

Enzyme price ($/kg protein)d 4.29 10 4.29
Enzyme loading (mg/g glucan) 20 20 20

   Operating pressure (atm) 1 1 20 (~2 MPa)
Operating temperature (C) 50 70 50 
Operating time (hr) 72 72 24 (pre-hydrolysis)

Glucan-to-glucose conversion (%) 90 90 90
Xylan-to-xylose conversion (%) 90 90 90
Sugar losses during extraction (%) N/A 5 N/A

Fermentation
Co-fermentation of glucose and xylose YES YES YES
Glucose-to-ethanol conversion (%) 90 90 90

 Xylose-to-ethanol conversion (%) 90 90 90
Xylose-to-ethanol conversion (%) 90 90 90
Operating pressure (atm) 1 1 20 (~2 MPa)
Opiating temperature (C) 32 32 32
Operating time (hr) 72 72 72
abased on (Bai, Wang et al. 2013, Cruz, Scullin et al. 2013, Konda, Shi et al. 2014, Shi, Balamurugan et al. 2014, Li, Tanjore et al. 
2015) 
b(Konda, Shi et al. 2014, Shi, Balamurugan et al. 2014)
cprice of ILs is assumed to reflect on the fact that the choline based ILs use cheaper raw materials and require simpler synthesis 
methods. For instance, according to the information available in the open literature (e.g., www.alibaba.com), both choline hydroxide 
and lysine (i.e., the primary raw materials used to synthesize [Ch][Lys]) can be purchased for about $700-$1500/MT (depending on 
the supplier, quality and order quanity). Moreover, the synthesis of [Ch][Lys] is fairly simple and doesn’t require extensive 
concentration/purification steps as the OP-CO2 process uses aqueous IL. Therefore, a price of $2/kg of [Ch][Lys] is a reasonable 
estimate in this preliminary TEA. Furthermore, a sensitivity analysis around IL price (varying from $1 to $10/kg) is conducted.
dprice of enzyme is assumed to reflect that the novel enzymes (JTtherm) are likely to be more expensive compared to the 
commercial enzymes (CTec2/HTec2)
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