Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2016

1	Supplementary Information
2	
3	CO ₂ adsorption-enhanced semiconductor/metal-
4	complex hybrid photoelectrocatalytic interface
5	for efficient formate production
6	Xiaofeng Huang, ^a Qi Shen, ^a Jibo Liu, ^a Nianjun Yang* ^b and Guohua Zhao* ^a
7	
8	^a School of Chemical Science and Engineering, Tongji University, 200092 Shanghai, China
9	^b Institute of Materials Engineering, University of Siegen, 57076 Siegen, Germany
10	*Corresponding Author. Tel: +86-21-65981180; Fax: +86-21-65982287
11	*Corresponding Author. Tel: +49-271-7402531; Fax: +49-271-7402442
12	
13	E-mail address: g.zhao@tongji.edu.cn
14	E-mail address: nianjun.yang@uni-siegen.de
15	
16	
17	Table of content
18	1. Experimental Section
19	2. Supplementary Results
20	3. References

1 1. Experimental Section

2 1.1 Chemicals and Solutions

3 Cobalt nitrate hexahydrate [Co(NO₃)₂·6H₂O], ruthenium trichloride hydrate (RuCl₃·xH₂O), 4 ammonium fluoride (NH₄F), hexamethylenetetramine (HMT), 2,2'-bipyridine(bpy), 1,10-5 phenathroline, 2,3,4,5,6-pentafluorobenzyl bromide, tetrabutylammonium 6 hexafluorophosphate (TBAPF₆), sodium tetrafluoroborate (NaBF₄), ferric nitrate nonahydrate 7 [Fe(NO₃)₃·9H₂O], potassium bromide (KBr), formaldehyde, resorcinol, sodium carbonate, 8 pyrrole, lithium chloride, dimethyl sulphoxide (DMSO), and acetonitrile were purchased from 9 Sinopharm Chemical Reagent Co., Ltd. (SCRC, China). They were analytical grade reagents 10 and used without further purification. D₂O was purchased from Cambridge Isotopic Laboratory 11 (D enrichment: 99.9%). NaH¹³CO₃ was purchased from Sigma-Aldrich (¹³C enrichment: 98%). 12 ¹³CO₂ and H¹³COONa (¹³C enrichment: 98%) were purchased from Shanghai Engineering 13 Research Center of Stable Isotope. 2% Nafion-117 solution was bought from Alpha-Aesar. 14 Fluorine-doped tin oxide coated glass (FTO, $14 \Omega \text{ sq}^{-1}$) was purchased from Nippon Sheet Glass Group (Japan). 0.1 M Na₂SO₄ and 0.1 M NaHCO₃ aqueous solutions, in which most 15 16 electrochemical measurements were done, were prepared using ultrapure Millipore water with 17 a conductivity of 18.2 M Ω cm. 18

19 1.2 Apparatus and Methods

Field-emission scanning electron microscope (FE-SEM) (Hitachi S-4800, Japan) and (high resolution) transmission electron microscope (HRTEM) (JEM-2100, JEOL, Japan) were employed to characterize the morphology of the as-prepared photocathodes.

The optical absorption spectra of the Co_3O_4/CA were measured using a UV-diffusive reflective spectroscopy (Avalight DHS, Avantes, Netherlands) equipped with a deuterium/halogen lamp as the UV/visible light source.

26 The fluorescence spectra of $Ru(bpy)_2dppz$ were recorded on a Hitachi F-7000 27 photoluminescent spectrometer (Hitachi, Japan). For the fluorescence spectra, 5 mM 28 $Ru(bpy)_2dppz$ in acetonitrile was used as the sample solution. The emission spectra were 29 recorded with an excitation wavelength of 400 nm.

30 CHI660C electrochemical workstation (CH Instruments Inc., USA) with a conventional 31 three-electrode system was applied to conduct all photoelectrochemical measurements. The 32 light source was an LA-410UV lamp with UV cutoff (Hayashi, Japan) and a light intensity of 33 1 mW cm⁻². A PLS-SXE300 xenon lamp with UV cutoff (Perfect Light Co., Ltd., China) with

34 a light density of 9 mW cm⁻² was used in the photoelectrochemical CO_2 reduction.

35 Rotating disk electrode experiments were conducted on a CHI760C (CH Instruments Inc.,

36 USA) with a PINE rotator (Pine, USA). For these electrochemical experiments, an Ag/AgCl

electrode with the saturated KCl solution acted as the reference electrode and a platinum foil as the counter electrode. The glassy carbon rotating electrode coated with $Ru(bpy)_2dppz$ or Co_3O_4

39 was the working electrode.

40 In comparison to those published, the potentials throughout the discussion in the textbody

41 have been converted to ones with respect to the normal hydrogen reference electrode (NHE).

- 42 Both high performance liquid chromatogram (HPLC) equipped with UV detector (CP3900,
- 43 Varian) and gas chromatogram (GC) equipped with a thermal conductive detector (GC7900,

- 1 Tech Comp, China) were adopted for quantitative determination of reduction products of CO₂
- 2 conversion on photocathodes.
- 3
- 4 1.3 Fabrication of Ru(bpy)₂dppz-Co₃O₄/CA photoelectrocatalytic interface
- 5 The preparation steps of such an interface, namely Ru(bpy)₂dppz-Co₃O₄/CA are demonstrated
- 6 schematically in Scheme S1. Prior to the preparation of such an electrode, carbon aerogel (CA),
- 7 Co_3O_4/CA , and $Ru(bpy)_2dppz$ were synthesized.

9 Scheme S1. Fabrication steps of Ru(bpy)₂dppz-Co₃O₄/CA concerted photoelectrocatalytic
 10 interface

11

Monolith bulky CA was prepared via ambient pressure resorcinol-12 Synthesis of CA formaldehyde (RF) drying method.^[S1] In brief, resorcinol, formaldehyde, deionized water, and 13 catalyst Na₂CO₃ were mixed with a molar ratio of 1:2:17.5:0.0008. Vigorous stirring led to the 14 15 generation of a colorless and transparent solution. Subsequently, the solution was transferred to the glass molds with an interlayer distance of 5 mm. The gel was aged continuously at 30 °C 16 for 1 day, 50 °C for 1 day, and 90 °C for 3 days. To exchange water content in the network of 17 the gel, the as-formed organic RF gel was immersed in acetone for 3 days. The obtained orange 18 gel was dried at ambient conditions and then pyrolyzed at 950 °C for 4 h under N₂ atmosphere. 19 The gas flow rate was 200 mL min⁻¹. The black bulky monolith was then formed. To activate 20 21 this monolith, the annealing was conducted at 850 °C for 4 h under the atmosphere of CO₂/N₂ 22 (volume ratio = 4:1). The ramping rate was 5 °C min⁻¹. The as-formed black monolith was 23 activated CA.

24

Synthesis of Ru(bpy)₂dppz A three-step approach was employed. Ru(bpy)₂Cl₂·H₂O and 25 dipyrido[3,2-a:2',3'-c]phenazine (dppz) were firstly synthesized. i) Synthesis 26 of Ru(bpy)₂Cl₂·H₂O: In 50 mL DMSO, 7.8000 g RuCl₃·xH₂O, 9.3600 g pyridine and 8.4000 g 27 LiCl were dissolved. The mixture was refluxed and stirred for 8 h. After cooling the mixture 28 down to room temperature, 250 mL acetone was added. Keeping such a mixture at 0 °C for 29 overnight led to the production of dark green crystals. They were obtained via filtering the 30 mixture. After washing with 25 mL deionized water and ether for three times, the crystals were 31 32 dried in vacuum. ii) Synthesis of dppz: In a 125 mL round-bottom flask, 4.0000 g 1,10-33 phenanthroline and KBr with equal masses were transferred. The mixture of concentrated sulfuric acid and nitric acid ($V_{\text{sulfuric acid}}$: $V_{\text{nitric acid}} = 40:20$) was added dropwisely into the flask 34 under magnetic stirring. The temperature after adding the acid mixture was kept at 80-85 °C for 35 3 h. After cooling down to room temperature, the mixture was transferred into 500 mL ice-water 36

⁸

1 mixture. The pH of the mixture was adjusted to 5-6 by adding 10 M NaOH. The products were 2 extracted with 100 mL chloroform for three times, and then washed with deionized water. 3 Na₂SO₄ anhydrate was utilized to absorb water during extraction for overnight. Removal of 4 Na₂SO₄ was done by filtering and re-crystallizing the product with 50 - 100 mL ethanol. A 5 yellow-orange and needle-like crystal was obtained. iii) Synthesis of Ru(bpy)₂dppz: In a 380 6 mL mixture of methanol-water ($V_{methanol}:V_{water} = 1:2$), 1.5400 g Ru(bpy)₂Cl₂·H₂O and 0.9300 g 7 dppz were dissolved. After refluxing such a solution for 4.5 h, its color was changed to heavy 8 red. This heavy-red solution was concentrated to 10% by heating at 80 °C. Then 10 mL 9 concentrated solution was diluted in 140 mL with deionized water. After boiling the solution 10 for 10 min, raw products were cooled in iced water and further filtered. During filtering, 10% 11 NaBF₄ solution was added. The products in filtrate were purified by recrystallization in 12 methanol.

13

14 *Fabrication of Ru(bpy)*₂*dppz-Co*₃*O*₄*/CA* Chemical polymerization was utilized to 15 decorate Co_3O_4/CA with Ru(bpy)₂dppz. In brief, 0.0040 g Ru(bpy)₂dppz was dissolved in 1 mL 16 acetonitrile solution, denoted as A. 0.0650 g Fe(NO₃)₃·9H₂O together with 8 µL pyrrole was 17 dissolved in 1 mL ethanol. The mixture was denoted as B. Mixing A and B (with equal volumes) 18 by shaking generated the stock solution for the electrode coating. One slide of Co_3O_4/CA was 19 then coated with 200 µL stock solution dropwisely. Such a composite was dried at 60 °C for 5 20 min. After repeating such a coating procedure for 10 times, Ru(bpy)₂dppz-Co₃O₄/CA was 21 fabricated.

22

23 **Preparation of photocathode** $Ru(bpy)_2dppz-Co_3O_4/CA$ powders were connected on a 24 copper plate $(2\times2 \text{ cm}^2)$ with silver paste. Then a self-made alligator clip was soldered on to 25 $Ru(bpy)_2dppz-Co_3O_4/CA$. The photocathode, namely $Ru(bpy)_2dppz-Co_3O_4/CA$ coated 26 electrocatalytic interface, was further sealed by water-proof silicone glue. The geometric area 27 of working electrode was $1\times1 \text{ cm}^2$.

28

29 *Calculation and discussion of activation energy* Due to a full coordination of the Ru(II) 30 center inside of Ru(bpy)₂dppz molecular catalyst, further binding of CO₂ to the Ru(II) 31 center is not possible. The electron transfer from Ru(bpy)₂dppz to CO₂ thus obeys the 32 outer-sphere electron transfer mechanism. In other words, CO₂ will be firstly activated 33 and then proton coupled electron transfer occurs, of which pattern belongs to the 34 dissociative electron transfer mode. Then, the activation energy, ΔG^* , can be calculated 35 using the equation of:

$$\Delta G^* = \Delta G_0^* \left(1 + \frac{\Delta G^{\circ}}{4\Delta G_0^*} \right)^2 \tag{1}$$

37 where ΔG_0^* is the intrinsic barrier and ΔG^0 is the apparent free energy change for the 38 electrochemical reaction. ΔG^0 can be calculated through classical thermodynamics:

39

36

$$\Delta G^{\circ} = nF(E - E^{\circ}) \tag{2}$$

40 Assuming one electron transfer mechanism during CO₂ reduction, the value of ΔG_0^*

41 can be calculated through the following equation:

1
$$\alpha = 0.5 + \frac{F}{8\Delta G_0^*} \left(E - E^\circ \right)$$
(3)

2 where α is the charge transfer coefficient, F (=96500 C mol⁻¹) the faraday constant, E3 is the applied potential, and E° is the standard redox potential for CO₂ to formate. In 4 our case, E° was -0.61 V vs. NHE. According to the Tafel equation, the charge transfer 5 coefficient, α , can be calculated by the following equation:

- $b = \frac{2.303RT}{\alpha F} \tag{4}$
- 7 where b is the Tafel slope, $R (= 8.3145 \text{ J mol}^{-1} \text{ K}^{-1})$ is the gas constant, and T is the
- 8 Kelvin temperature. According to the results shown in Fig. 3c, *b* was calculated to be 9 145 mV dec^{-1} for Ru(bpy)₂dppz-Co₃O₄/CA.
- 10 Using equation (4) α was calculated to be 0.408. Using equation (2) and (3) and a value
- 11 of E = 0.59 V (vs. NHE), obtained from the red plot in Fig. 1a, ΔG_0^* is to be 2.622 kJ
- 12 mol⁻¹, leading to a ΔG^* value of 1.047 kJ mol⁻¹.

1 2. Supplementary Results

- 2 Table S1. CO₂ adsorption capacity and electrochemically active surface area of Co₃O₄/FTO,
- Co_3O_4/CA and $Ru(bpy)_2dppz-Co_3O_4/CA$ photocathodes.

	Co ₃ O ₄ /FTO	Co ₃ O ₄ /CA	Ru(bpy)2dppz-Co3O4/CA
<i>m</i> [mg cm ⁻²]	5	8	4
$S [cm^2]$	6.14×10 ⁻³	1.64×10 ⁻²	1.64×10 ⁻²
$S_{ m EASA} [m cm^2]$	316	8015	2030
$\Gamma_{\rm ads}[{ m cm}^2]$	3.88×10-3	1.99	7.69
$\Gamma_{\rm ads} / A [\rm nmol \rm cm^{-2}]$	7.76×10 ⁻²	39.8	154
$\Gamma_{\rm ads}/S_{\rm EASA}$ [pmol cm ⁻²]	1.23×10 ⁻²	0.248	3.79
$\Gamma_{\rm ads}/m$ [µmol g ⁻¹]	1.55×10-2	4.97	38.5

m: loading amount catalyst;

5 S: active surface area determined by cyclic voltammogram in 5 mM $Fe(CN)_6^{3-/4-}$;

 S_{EASA} : electrochemical active surface area;

 Γ_{ads} : amount of CO₂ adsorbed on photocathode;

A, geometric electrode area (= 0.05 cm^2)

1 Table S2. Comparison of peak current densities (normalized by geometric area or loading

2 amount of the catalyst) and corresponding onset potentials on Co_3O_4/FTO , Co_3O_4/CA and

Ku(opy)2upp2-co304/CA photocathodes.					
		^a Co ₃ O ₄ /FTO	^b Co ₃ O ₄ /CA	°Ru(bpy)2dppz-Co3O4/CA	
<i>j</i> _{A,peak} [mA	$\operatorname{cm}^{-2}]$ @ E_{on}	set [V] (peak current of	density normalized l	by geometric area)	
N ₂ ,	EC	0.095 @ -0.77	1.110 @ -0.59	3.450 @ -0.56	
N ₂ ,	PEC	0.206 @ -0.70	1.470 @ -0.57	4.600 @ -0.50	
CO ₂ ,	EC	0.061 @ -0.70	1.730 @ -0.59	5.230 @ -0.50	
		0.271 @ -0.81	0.789 @ -0.72		
CO ₂ ,	PEC	0.103 @ -0.67	1.690 @ -0.53	8.040 @ -0.45	
		0.534 @ -0.74	0.868 @ -0.65		

3 Ru(bpy)₂dppz-Co₃O₄/CA photocathodes

 $j_{m,\text{peak}}$ [mA mg⁻¹] @ E_{onset} [V] (peak current density normalized by the loading amount of catalyst)

N ₂ ,	EC	0.019 @ -0.77	0.139 @ -0.59	0.863 @ -0.56
N ₂ ,	PEC	0.041 @ -0.70	0.184 @ -0.57	1.150 @ -0.50
CO ₂ ,	EC	0.012 @ -0.70	0.216 @ -0.59	1.308 @ -0.50
		0.054 @ -0.81	0.099 @ -0.72	
CO ₂ ,	PEC	0.021 @ -0.67	0.211 @ -0.53	2.010 @ -0.45
		0.107 @ -0.74	0.109 @ -0.65	

4 EC: electrochemical condition;

5 PEC: photoelectrochemical condiction.

6 $j_{A,peak}$: peak current density normalized by the geometric area of the photocathode

7 $j_{m,peak}$: peak current density normalized by the loading amount of the catalyst;

8 E_{onset} : onset potential

9 *A*: geometric electrode area (= 0.05 cm^2)

1	Table S3. Turne	over number (TON	I) of photoelect	trochemical CO ₂ rec	luction into form	ate on
2	Co ₃ O ₄ /FTO, Co	$_{3}O_{4}/CA, Ru(bpy)_{2}$	dppz/CA and 1	Ru(bpy)2dppz-Co3O	4 photocathodes	under

E vo		TON _{formate}			
L VS. NHE / V	Co ₃ O ₄ /FTO	Co ₃ O ₄ /CA	Ru(bpy)2dppz/CA	Ru(bpy) ₂ dppz-	
NE/V				Co ₃ O ₄ /CA	
0	2.6	2.0	5.3	121.1	
-0.2	3.5	4.5	5.7	205.3	
-0.4	4.9	8.6	18.9	681.1	
-0.5	5.8	17.6	38.7	908.6	
-0.6	5.8	22.3	39.7	978.7	
-0.7	9.3	24.0	48.3	1179.1	
-0.8	10.1	26.6	57.5	1334.4	
-0.9	10.7	30.2	77.8	1771.2	
-1.0	11.2	35.6	89.3	1964.9	

3 various potentials for 8 h.

1 Table S4. Turnover frequency (TOF) photoelectrochemical CO₂ reduction into formate on 2 Co₃O₄/FTO, Co₃O₄/CA, Ru(bpy)₂dppz/CA and Ru(bpy)₂dppz-Co₃O₄ photocathodes under

	Eve	TOF _{formate} [h ⁻¹]				
	E VS.	Co ₃ O ₄ /FTO	Co ₃ O ₄ /CA	Ru(bpy)2dppz/CA	Ru(bpy)2dppz-	
	NNE / V				Co ₃ O ₄ /CA	
	0	0.32	0.27	0.67	15	
	-0.2	0.43	0.55	0.71	25	
	-0.4	0.61	1.1	2.4	85	
	-0.5	0.73	2.2	4.8	113	
	-0.6	0.85	2.8	5.0	122	
	-0.7	1.2	3.0	6.0	147	
	-0.8	1.3	3.3	7.2	166	
	-0.9	1.3	3.8	9.7	221	
	-1.0	1.4	4.4	11.2	245	
4						
5	The equation	on for the calcula	tion of TON and	TOF:		
6	mols of formate produced				(5)	
U	$ION = \frac{1}{\text{mols of catalysts used}}$					(0)
7	$TOF = \frac{TON}{\text{reaction time}}$				(6)	
~						

3 various potentials for 8 h.

2 **Fig. S1**. Variation of Δm as a function of applied potentials on the Au crystal before (squares) 3 and after (circles) being coated with CA.

5 In EQCM experiments, Δm , was calculated according to Sauerbrey's equation:^[S2]

6

$$\Delta m = -S \cdot \Delta f \tag{7}$$

7 where Δm is the mass addition of the electrode (namely the mass difference before and after

8 CO₂ adsorption), $S (= 5.29 \text{ ng cm}^{-2} \text{ Hz}^{-1})$ is the calibrated sensitivity factor and Δf is the change

9 of the frequencies during measurements.

Fig. S2. (a) N₂ adsorption/desorption isotherm and (b) Barrett-Joyner-Halenda (BJH) pore size
distribution of Co₃O₄/CA (circles) and CA (squares). Inset of (b): Magnification in the 0.15-1.2

5 Å region.

4 **Fig. S3** Cyclic voltammograms of 5 mM Fe(CN)₆^{3-/4-} in 0.1 M KCl on (a) Co_3O_4/FTO , (c) Co_3O_4/CA 5 and (e) Ru(bpy)₂dppz-Co₃O₄/CA photocathodes at the scan rate of 5, 10 25, 50, 75, 100, 200, 250, 6 300, 400, and 500 mV s⁻¹. Variation of peak current densities as a function of the square root of scan 7 rates for (b) Co_3O_4/FTO , (d) Co_3O_4/CA , and (f) Ru(bpy)₂dppz-Co₃O₄/CA.

9 The real active area can be calculated through Randles-Sevcik equation:

10
$$i_p = 2.69 \times 10^5 n^{3/2} A D^{1/2} C v^{1/2}$$
 (8)

11 where i_p is the peak current, n is the electron transferred (n=1 in current case), A is the active 12 electrode area, D is the diffusion constant of ferrous cynide ($D=6.7\times10^{-6}$ cm² s⁻¹), C is the 13 concentration of ferrous cyanide, and v is the scan rate. Linear fittings gave the slopes of 2.105×10^{-5} , 14 5.635×10^{-5} , and 5.634×10^{-5} in Fig. 3(b), (d) and (f), which are for Co₃O₄/FTO, Co₃O₄/CA and 15 Ru(bpy)₂dppz-Co₃O₄/CA, respectively. Therefore, the active electrode area is 6.14×10^{-3} , 1.64×10^{-2} , 16 and 1.64×10^{-2} cm² for Co₃O₄/FTO, Co₃O₄/CA and Ru(bpy)₂dppz-Co₃O₄/CA, respectively. These 17 values are also tabulated in Table S1.

3

2

4 **Fig. S4**. Chronocoulometry of (a) $Ru(bpy)_2dppz-Co_3O_4/CA$, (b) Co_3O_4/CA , and (c) Co_3O_4/FTO 5 in N₂ (light-colored line) / CO₂ (dark-colored line) purged 0.1 M Na₂SO₄. The potential was

6 stepped from 0 to -1.0 V vs. Ag/AgCl. The pulse width was 100 s for both $Ru(bpy)_2dppz$ -

6 stepped from 0 to -1.0 V vs. Ag/AgCl. The pulse width w 7 Co_3O_4/CA and Co_3O_4/CA , and 1 s for Co_3O_4/FTO .

2

1

4 Fig. S5. Cyclic voltammograms of (a) $Ru(bpy)_2 dppz-Co_3O_4/CA$, (b) Co_3O_4/CA , and (c) 5 Co_3O_4/FTO in 1 M NaOH at a scan rate of 50 mV s⁻¹.^[S3]

6

9

7 The electrochemically active surface area (S_{EASA}) of the electrode was calculated using the 8 equation of^[S3]

$$S_{EASA} = \frac{A}{v \cdot C_{ref}}$$
(9)

where *A* is the integrated area of the reduction peak in the cyclic voltammogram (the shade area shown in Fig. S5), *v* is the scan rate, and C_{ref} (=60 µF cm⁻²) is the reference capacity of Co₃O₄.^[S3]

3 Fig. S6. SEM images of (a) Co_3O_4/CA and (b) magnified Co_3O_4 micro-flowers.

Fig. S8. Cyclic voltamograms of Ru(bpy)₂dppz/FTO at a scan rate of 50 mV s⁻¹ in N₂ purged
Na₂SO₄ (black-dotted line) and NaHCO₃ (pink-solid line) as well as in CO₂ saturated NaHCO₃
(red-solid line). The concentration of the solutions was 0.1 M.

Fig. S9. Linear sweep voltamograms on (a) Co₃O₄/CA and (b) Co₃O₄/FTO at a scan rate of 50
mV s⁻¹ in N₂ purged 0.1 M Na₂SO₄ (black dotted line), N₂ purged 0.1 M NaHCO₃ without
(green) / with (yellow) irradiation, CO₂ saturated 0.1 M NaHCO₃ without (orange) / with (red)
irradiation.

2 **Fig. S10**. The variation of j_{PEC} - j_{EC} on Ru(bpy)₂dppz-Co₃O₄/CA (red), Co₃O₄/CA (cyan) and 3 Co₃O₄/FTO (gray) as a function of the potentials applied. The values of j_{PEC} - j_{EC} were calculated 4 from linear sweep voltammograms conducted in 0.1 M Na₂SO₄ at a scan rate of 50 mV s⁻¹.

4 Fig. S11. (a) TEM image of a single petal on Co₃O₄ micro-flowers; (b) HRTEM pattern of petal

5 region of a Co_3O_4 micro-flower; and (c) selected area electron diffraction pattern of petal

region.

3 **Fig. S12**. Variation of yield rates of formate (red circle) and hydrogen (blue square) on the 4 $Ru(bpy)_2dppz-Co_3O_4/CA(a)$, $Co_3O_4/CA(b)$, $Ru(bpy)_2dppz/CA(c)$ and $Co_3O_4/FTO(d)$ as a 5 function of the applied potentials.

2 Fig. S13. XRD patterns of $Ru(bpy)_2dppz$ -Co₃O₄/CA before (a) and after (b) 3 photoelectrochemical CO₂ reduction for 8 h. c) Standard XRD patterns of Co₃O₄.

2 Fig S14. 100 continuous cyclic voltammograms of $Ru(bpy)_2dppz$ -Co₃O₄/CA obtained at a scan

3 rate of 50 mV s⁻¹ in CO_2 saturated NaHCO₃ (0.1 M).

3 Fig. S15. UV-diffusive reflective spectrum (a) and the corresponding Tauc plot (b) of 4 Co_3O_4/CA .

7

2

1

6 Tauc plot was converted according to the Tauc equation:^[S4]

$$\alpha h v = A(h v - E_{g})^{\frac{1}{n}}$$
(10)

8 where α is the absorption coefficient of Co₃O₄, *h* is the Planck's constant, *v* is the frequency of

9 incident light, and E_g is the band gap of Co₃O₄. Since the transition belongs to direct transition 10 for Co₃O₄, then *n* is equal to 2.

Fig. S16. Mott-Schottky plot of Co₃O₄/CA in 0.1 M Na₂SO₄ at a frequency of 1.0 kHz.
 3

4 Mott-Schottky equation was employed to calculate the built-in potential of the flat-band 5 potential of Co_3O_4 in the form of [^{S5}]

6

$$\frac{1}{C^2} = \frac{2}{\varepsilon_0 \varepsilon_r A^2 N_B} (V - V_{FB} - \frac{kT}{e})$$
(11)

7 where C is the space charge capacity (F), \mathcal{E}_{o} (= 8.854×10⁻¹² F m⁻¹) is the dielectric constant of

8 vacuum, V is the applied potential (V), $V_{\rm FB}$ is the flat band potential (V), A is the electrode area 9 (cm²), $N_{\rm B}$ is the carrier concentration of Co₃O₄, k (=8.6173324×10⁻⁵ eV K⁻¹) is the Boltzmann's

10 constant, *T* is the absolute temperature, and *q* is (=1.60×10⁻¹⁹ C) the elemental charge. \mathcal{E}_r is 12.9 11 for Co₃O₄.^[S6]

1

- 3
- 4

Fig. S17. (a) Imposing of UV-Vis absorption spectrum (purple) and corresponding fluorescent
spectrum of 5 mM Ru(bpy)₂dppz in MeCN; (b) Cyclic voltamograms of 5 mM Ru(bpy)₂dppz
at a scan rate of 100 mV s⁻¹ in MeCN containing 0.1 M TBAPF₆ in the absence and presence
of CO₂.

9

Here, MeCN was chosen as the solvent for electrochemical characterization of Ru(bpy)₂dppz.
The Ru molecular catalyst we used was not water-soluble and hence its electrochemical
properties, or related energies, can be only obtained from the results obtained in organic
solvents^[S7,S8].

14 LUMO energy level of Ru(bpy)₂dppz was calculated according to the following equation:^[S9]

15
$$E^* = E - E_{00} / q \tag{12}$$

where E^* is the LUMO energy level and q (=1) is the charge transferred for Ru(III)/Ru(II) 16 couple. E_{00} is energy difference between HOMO and LUMO orbital, calculated through the 17 intersection point of normalized UV spectrum and fluorescent spectrum of Ru(bpy)₂dppz 18 shown in Fig. S17a. E is the redox potential level of Ru(III)/Ru(II) couple at the underground 19 20 state. The value of E was determined from the cyclic voltamogram shown in Fig. S17b. Please note that the Ag⁺/Ag reference electrode was filled with MeCN containing 10 mM AgNO₃. 21 22 Such a reference electrode was calibrated by ferrocenium/ferrocene couple. The difference of its electrode potential from NHE was 0.46 V. 23

1

4 **Fig. S18**. Hydrodynamic voltammograms of (a) $Ru(bpy)_2dppz$ and (b) Co_3O_4 coated glassy 5 carbon electrode in CO_2 saturated 0.1 M NaHCO₃ under various rotation speeds at a scan rate 6 of 5 mV s⁻¹. (c) Koutecky-Levich fitting of (b).

7

8 For rotating disk electrode experiments, Koutecky-Levich fitting of the polarization curve was
9 obtained according to Koutecky-Levich equation:^[S10]

10

11

$$\frac{1}{i} = \frac{1}{i_{\rm K}} + \frac{1}{0.62nFAD_0^{2/3}\omega^{1/2}\nu^{-1/6}C_0}$$
(13)

12 where $i_{\rm K}$ is the kinetic current, *n* is the electron number transferred, *F* (=96500 C mol⁻¹) is the

Faraday constant, D_0 (=1.07×10⁻⁵ cm s⁻¹) is the diffusion coefficient of CO₂ in 0.1 M NaHCO₃, w is the rotation speed of electrode (in rad s⁻¹), v (=0.9215 m² s⁻¹) is the kinematic viscosity of

15 0.1 M NaHCO₃, C_0 (=0.034 M) is the concentration of CO₂ in 0.1 M NaHCO₃.

1 3. References

- [S1] M. F. Wu, Y. N. Jin, G. H. Zhao, M. F. Li, D. M. Li, *Environ. Sci. Technol.* 2010, 44, 1780.
- 4 [S2] G. Sauerbrey, Z. Phys. 1959, **155**, 206-222.
- 5 [S3] M. D. Koninck, S.-C. Poirier, B. Marsan, J. Electrochem. Soc. 2006, 153, A2103.
- 6 [S4] J. Tauc, Materials Research Bulletin 1968, 3, 37-46.
- 7 [S5] K. Gelderman, L. Lee, S. W. Donne, J. Chem. Educ. 2007, 84, 685.
- 8 [S6] V. Singh, M. Kosa, K. Majhi, D. T. Major, J. Chem. Theory Comput. 2015, 11, 64.
- 9 [S7] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595.
- 10 [S8] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N.
- 11 Vlachopoulos, M. Graetzel. J. Am. Chem. Soc. 1993, 115, 6382.
- 12 [S9] B.V. Bergeron, G.J. Meyer, J. Phys. Chem. B 2003, 107, 245.
- 13 [S10] S. Treimer, A. Tanga, D.C. Johnson, *Electroanalysis* 2002, 14, 165.