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Growth of mossy lithium before Sand’s time

Figure S1. Visualization of the root-growth mechanism of mossy lithium before Sand’s time. 

While the deposits continuously thicken themselves globally, the (a) displacement and (b) 

rotation of the tips reveal that major proliferations occur at locations behind the tips, which is a 

stark difference from existing models of transport-limited growth occurring only at the tips.

Calculation of the current densities

Since the Sand’s time and the instability occurred on the surface of the electrode are all 

determined by the depletion of the electrolyte, the current density in Sand’s formula should be 

the flux density through the cross-section of the capillary, not the local current density on the 

electrode, so we measured the inner diameter of the capillary to determine the area (Fig. S2), 

based on which current density is calculated.

Figure S2. Example of the diameter measurement. Jtip=2.61 mA cm-2
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Table S1. Total current and the corresponding current density of the capillary cell experiments.
c0 / mol l-1 I / μA dtip / μm dSand / μm Jtip / mA cm-2 JSand / mA cm-2 Javg / mA cm-2 tSand / s

0.3 272 243 0.52 0.65 0.58 7953

0.7 302 277 0.98 1.16 1.07 2750

1.2 316 314 1.53 1.55 1.54 1500

1.2 277 266 1.99 2.16 2.08 1130

2 316 247 2.55 4.18 3.36 893

2.6 286 277 4.05 4.32 4.18 530

2.7 230 216 6.50 7.37 6.94 300

0.5

5 252 228 10.03 12.25 11.14 235

0.5 242 181 1.09 1.94 1.52 6780

0.7 229 191 1.70 2.44 2.07 5600

1.4 287 253 2.17 2.79 2.48 3100

1 221 187 2.61 3.64 3.13 2690

1.4 251 213 2.83 3.93 3.38 2005

2.6 321 263 3.21 4.79 4.00 1880

2.5 266 240 4.50 5.53 5.01 1100

4 291 249 6.02 8.22 7.12 730

1

5.8 330 262 6.78 10.76 8.77 610

0.9 233 161 2.11 4.42 3.27 7986

2 285 236 3.14 4.57 3.86 4055

2.2 271 173 3.82 9.36 6.59 3537

2.7 264 182 4.93 10.38 7.66 2224

4.5 284 215 7.11 12.40 9.75 1316

4 235 169 9.23 17.84 13.53 868

2

7.5 277 207 12.45 22.30 17.37 664

The three kinds of current densities all produce similar scaling for each concentration. In this 

paper, we only use the one at the initial position of the electrode, i.e. Jtip, for all analyses.
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Experimental Observation of Electro-osmotic Flow 

While electro-osmotic (EO) flow is not significant in practical batteries using dense porous 

separators, the analysis presented here confirm that EO convection is the primary reason for the 

observed deviation from the theoretical scaling of Sand’s time with current. Thanks to the small 

lithium debris produced during cell assembly, we are able to observe the fluid velocity in various 

locations of the capillary to obtain a rough estimation of the Peclet number, which measures the 

importance of convection relative to diffusion. 

Figure S3. Estimation of the local fluid velocity from floating lithium debris in the capillaries. 

Also see movies S3-S5.

Table S2. Estimation of the experimental Peclet numbers.
c0 (mole l-1) Jtip (mA cm-2) Δt (s) ΔL (um) U (um s-1) d (um) D (cm2 s-1) Pe=Ud/D

0.5 1.53 60 366 6.10 286 3.4×10-6 5.13

1.0 6.78 32 236 7.38 330 3.0×10-6 8.12

2.0 3.82 60 221 3.68 235 1.7×10-6 5.09

For the above three experiments that most clearly show convection, the Peclet numbers based on 

direct observations of the fluid velocity are calculated in Table S2.  Values larger than one 

indicate significant convection, which is neglected in the classical derivation of Sand’s time.
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Effects of Electro-osmotic Convection on the Apparent Diffusivity

Naively, convection would be expected to enhance mass transfer and thus increase Sand’s time 

compared to pure diffusion, but the coupled problem of EO flow and concentration polarization 

is very complicated, even in steady state, and has never been analyzed under transient conditions. 

It is also possible that convective mixing will lower the local “bulk” concentration outside the 

diffusion layer, thus decreasing Sand’s time, and increasing the apparent diffusivity from Sand’s 

formula, as observed in our experiments discussed in the main text. Here, we briefly attempt to 

estimate the effect of EO convection on the apparent diffusivity from Sand’s formula, just to 

show that this is a plausible explanation of the data, in light of the observed flows and Peclet 

numbers larger than one shown above.

EO flow in a closed capillary (or porous medium) leads to pressure-driven backflow, in order to 

maintain zero average flow rate.  The sum of EO plug flow driven by the surface double layers 

and parabolic Poiseuille flow in the opposite direction yield vortices of flow, which have 

previously been observed in thin-gap (microfluidic) copper electrodeposition experiments by 

Huth et al.45. A simple theory to capture the effect of electro-osmotic convection on the effective 

diffusivity in a capillary based on Taylor dispersion has been proposed by Yaroshchuk et al.63: 

(S1)

where,  is a reference diffusivity at zero current and the Peclet number is 0 ( 0)app appD D J 

estimated using the Helmholtz-Smoluchowski electro-osmotic slip formula and the mean electric 

field, equal to the current density divided by the mean local conductivity.  Although this theory 

loses validity above the limiting current in a strongly depleted capillary46, 63, it should suffice for 

our analysis of the current-dependence of Sand’s time, prior to diffusion limitation and the onset 

of dendrites.

Following the suggestion of a recent numerical study54, the apparent diffusivity in Sand’s time 

for a concentrated electrolyte (without convection) may be approximated by using the traditional 

apparent diffusivity, e.g. measured by linear response to a small current step42,43, evaluated at an 

intermediate concentration, such as c0/2.
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The electric field and resulting EO flow are the largest in the depleted region close to the 

electrode as Sand’s time is approached, and this is where the strongest convection is observed in 

the experiments. Thus, we estimate the local conductivity in the EO Peclet number using 1/5 of 

the bulk salt concentration c0.  The viscosity at this concentration for the electrolyte is taken from 

the literature64. With these crude but reasonable approximations, only ζ potential (a measure of 

the surface charge of the capillary) is fitted to the experimental data for the apparent diffusivity, 

extracted from the experimental Sand’s time in the main text.
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Figure S4. Comparison of the Dapp obtained from the capillary cells with the Taylor dispersion 

formula.

Table S3. Parameters used for the Taylor dispersion formula.
c0 

(mol l-1)

ϵr ζ 

(mV)

aη 64

(mPa s)

aσ0 42

(mS cm-1)
 0

appD

(cm2 s-1)

D0 42

(cm2 s-1)

tLi 42 

0.5 35 100 1.35 2.5 0.5×10-6 3.4×10-6 0.38

1 35 100 1.53 4.6 0.7×10-6 3.0×10-6 0.38

2 35 100 2.00 7.7 0.4×10-6 1.7×10-6 0.38
aEvaluated at c0/5.

This simple theory leads to a reasonable collapse of the experimental data for hydrodynamic 

dispersion versus Peclet number, as shown Fig. S4. The scaling function lies close to the 

prediction of Taylor dispersion in the EO vortices observed near the tips. Despite some 

admittedly very rough approximations, the analysis shows that the observed scaling with current, 

departing from the classical Sand’s formula based on linear diffusion alone, could be attributable 



7

to hydrodynamic dispersion resulting from EO flow in the capillary. This is also consistent with 

our direct observations of the flow. 

An important observation is that the data collapse extrapolates to an apparent diffusivity at zero 

current that is consistent with literature values for this electrolyte.  This means that the results of 

our capillary experiments, which show noticeable effects of convection at high currents, also 

have relevance for practical batteries, where EO flow may be negligible.  As shown in the main 

text, the main difference with a theory based purely on diffusion is that the experimentally 

observed scaling with current is different in the capillary cell.  The sandwich cell results (also 

without significant convection) further confirm the validity of the predicted mechanisms of 

lithium growth determined by direct visualization in the capillary cell.

Blockage versus penetration of lithium deposits in sandwich cells

Figure S5. Digital photos of the lithium electrodes, deposits and anodic alumina oxide (AAO) 

separators harvested from the sandwich cells experiments shown in Fig. 3. In contrast to the clear 

AAO (a), penetration of AAO by lithium deposits is clearly visible in the case of overlimiting-

current deposition (b).



8

Derivation of the scaling function f(J̃) for the dilute binary electrolyte

Methods of solving diffusion equations can be found in many text books on transport phenomena. 

Here, we provide an example of derivation to get the scaling function f(J̃).

In a dilute binary electrolyte, the single salt dissociates into equal numbers of anions and cations, 

i.e. ca=cc=c, with the charge numbers zc=−za=1. Neglecting the convection, the evolution of the 

concentrations in a one-dimensional system can be modeled by the following set of equations21,

2

2a a a
c cD z F c
t x x x

           

(S2)

2

2c c c
c cD z F c
t x x x

           

(S3)

where Di and μi are diffusion coefficient and mobility of either the anions or the cations, ϕ is the 

potential applied to the system to maintain the required current density. Elimination of the 

potential terms yields an effective diffusion equation21,

2

2 , c c a a a c
app app

c c a a

z D z Dc cD with D
t x z z

 
 
 

 
  

(S4)

By using the Nernst-Einstein relation, Di = RTμi, we can rewrite the effective diffusivity Dapp and 

the transference number as,

2 c a
app

c a

D DD
D D




(S5)

1 a a a
a c

c c a a c a

z Dt t
z z D D


 


   
 

(S6)

so that Dapp=2Dcta=2Datc. 
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Figure S6. Concentration evolution in the diffusion layer near the surface of the electrode.

We are interested in the concentration evolution near the surface of the electrode when an 

overlimiting current is applied. From the fact that the current at the boundary (x=L/2) is 

contributed solely by the electrodeposition of cations, we have the flux of anions as

/2
0 a a a ax L

cN z Fc D
x x




 
   

 
(S7)

Therefore, the flux of cations at x=L/2 is

/2
2c c c c cx L

c

J c cN z Fc D D
z F x x x




  
     

  
(S8)

from which one can define the limiting current as,

00 0
lim

242
/ 2

c appc c
c c

a

z c FDc z c FDJ z FD
L L t L

  
(S9)

We can then use Eqs (S8) and (S9) to obtain the dimensionless boundary condition by scaling c 

to c0, x to L/2 and t to (L/2)2/Dapp, 

0
lim

2 c app

a

z c FDc J J J J
t Lx


     


% %
%

(S10)

To solve the time it takes to deplete the concentration at the surface of the electrode to zero when 

an overlimiting current is applied, we construct

  1, cu x t
J x


 


%%%% % %
(S11)

which should satisfy the linear ambipolar diffusion equation (S4)
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2

2

u u
t y
 


 

% %
% %

(S12)

where we have applied ỹ = 1−x̃. 

With the following initial and boundary conditions,

   , 0 0; 0, 1u y t u y t   % %% % % % (S13)

the dynamics is governed by the complementary error function (erfc) 55,

erfc
2

yu
t

 
  

 

%
%

%

(S14)

So that,

1erfc
2

c xJ
x t

  
     

% %%
% %

(S15)

Integration of Eq (S15) and application of the initial and boundary conditions in Eq (S13) yield

  1, 1 2 ierfc
2

xc x t t J
t

 
   

 

%%% %%%
%

(S16)

where the iterated integral of complementary error function (ierfc) is defined as,

   ierfc erfc
z

z z dz


 

  22erfc e s

z
z ds


  

(S17)

For J̃ > 1, the Sand’s time can be solved via Eq (S16) at zero concentration,

   1, = 1 2 ierfc 0 0Sand Sandc x t t t J   %%% %%% (S17)

Using ierfc(0) = π−0.5, the final form of the scaling function is obtained,

  24Sand dilutet f J
J


 %%
%

(S18)
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Capillary cell experiments with ether-based electrolytes

Figure S7. Transition from mossy lithium (collection of root-growing whiskers) to tip-growing 

fractal lithium in ether-based electrolytes. (a) Voltage responses of the constant-current 

electrodepositions. Final snapshots of lithium deposits in (b) 1 M LiFSI-DME electrolyte and (c) 

1 M LiTFSI-DME/DOL electrolyte. Corresponding movies S6 and S7 are available in the online 

electronic supplementary information. While the dynamics are similar to those in carbonate-

based electrolytes, the differences in the appearance are attributable to the different SEI layers 

formed in ether-based electrolytes.
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