Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Structurally Stable Mg-doped P2-Na_{2/3}Mn_{1-y}Mg_yO₂ Sodium-ion Battery Cathodes with High Rate Performance: Insights from Electrochemical, NMR and Diffraction Studies

Raphaële J. Clément,^a Juliette Billaud,^b A. Robert Armstrong,^b Gurpreet Singh,^c Teófilo Rojo,^c Peter G. Bruce,^{b,d} Clare P. Grey^a

^aDepartment of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom

^bSchool of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom

°CIC ENERGIGUNE, Parque Tecnológico de Álava, Albert Einstein 48, ED. CIC, 01510 Miñano, Spain

^dDepartment of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom

I. Additional electrochemical data

Figure S1. First cycle electrochemical profiles of the $Na_{2/3}Mn_{1-y}Mg_yO_2$ (y = 0.0, 0.05 and 0.1) compositions. The compounds were cycled at 10 mAg⁻¹ between 1.8 and 3.8 V vs. Na^+/Na .

Figure S2. Evolution of the discharge capacity as a function of the cycle number for $Na_{2/3}Mn_{1-y}Mg_yO_2$ (y = 0.0, 0.05, and 0.1). The cells were cycled between 1.5 and 4.0 V vs. Na^+/Na , and charged and discharged at 12 mAg⁻¹.

II. Fitted diffraction patterns and crystallographic parameters

1. Na_xMnO₂

Figure S3. Fitted powder XRD pattern for the as-prepared $Na_{2/3}MnO_2$ compound. In this and all subsequent diffraction patterns, the red dots represent the observed data, and the solid line the calculated pattern; the lower line is the difference/esd. Tick marks represent the allowed reflections. Phase 1 (lower tick marks) corresponds to the orthorhombic $Na_{2/3}MnO_2$ phase (*Cmcm*) and phase 2 (upper tick marks) relates to the monoclinic $Na_{2/3}MnO_2$ phase (*C2/n*).

Table S1. Refined parameters of the Na_{2/3}MnO₂ compound. $R_{wp} = 2.67$ %, $R_e = 2.22$ %, $R_p = 2.09$ %. In this and all subsequent tables, the e and f labels indicate edge- and face-centered sites, respectively.

		70 %	Orthorhombic	phase (Cmcm))	
Atom	Wyckoff	x/a	<i>y</i> /b	z/c	Occupancy	Biso
Na1(e)	4c	0	0.331(5)	0.25	0.44(1)	1
Na2(f)	4c	0	0.068(11)	0.25	0.22(1)	1
Mn1	4a	0	0	0	1	0.1(2)
01	8f	0	0.641(2)	0.0794(8)	1	0.9
	<i>a</i> =	= 2.8368(2)	Å, <i>b</i> = 5.3153(4	4) Å, <i>c</i> = 11.15	538(12) Å	
		30	% Monoclinic	phase (C2/n)		
Atom	Wyckoff	x/a	<i>y</i> /b	z/c	Occupancy	Biso
Na1(e)	4e	0	0.299(10)	0.25	0.43(3)	1
Na2(f)	4e	0	0	0.25	0.22(3)	1
Mn1	4a	0	0	0	1	0.6
01	8f	0.004(6)	0.632(4)	0.086(2)	1	0.9
	<i>a</i> = 2.8342	(7) Å, $b = 5$.	2669(8) Å, <i>c</i> =	11.2304(13)	A and $\beta = 90.78$	2)

Figure S4. Fitted powder neutron diffraction pattern for the as-prepared $Na_{0.62}MnO_2$ compound.

Table S2. a) Refined crystallographic parameters for Na_{0.62}MnO₂ in the *C*2/*n* space group, *a* = 2.83245(8) Å, *b* = 5.2580(2) Å, *c* = 11.2195(3) Å, β =90.701(3). R_{wp} = 3.85 %, R_e = 1.65 %, R_p = 3.80 %.

$Na_{0.62}MnO_2(C2/n)$								
Atom	Wyckoff	x/a	<i>y</i> /b	<i>z</i> /c	Occupancy	Biso		
Na1(e)	4e	0	0.325(2)	0.25	0.46(2)	1.96(13)		
Na2(f)	4e	0	-0.079(3)	0.25	0.19(1)	1.96(13)		
Mn1	4a	0	0	0	1	0.09(2)		
01	8f	0.0044(6)	0.6489(3)	0.0923(2)	1	0.82(2)		
a	u = 2.83245(8)) Å, $b = 5.25$	580(2) Å, $c =$	11.2195(3)	Å, $\beta = 90.701(3)$			

Figure S5. Fitted powder diffraction patterns for: a) $Na_{0.37}MnO_2$ following charging to 3.5 V (neutron data); b) $Na_{0.31}MnO_2$ formed after the extended plateau at the end of charge (XRD data; upper tick marks correspond to the orthorhombic phase (*Cmcm*) and lower tick marks to the OP4 phase); and c) $Na_{0.82}MnO_2$ obtained at the end of discharge (neutron data; lower tick marks correspond to the orthorhombic Na_1MnO_2 phase and upper tick marks to the $Na_{2/3}MnO_2$ phase).

a) Na _{0.37} MnO ₂ (<i>Cmcm</i>)								
Atom	Wyckoff	<i>x</i> /a	<i>y</i> /b	<i>z</i> /c	Occupancy	Biso		
Na1(e)	4c	0	0.325(3)	0.25	0.29(2)	0.8(3)		
Na2(f)	4c	0	0	0.25	0.046(11)	1		
Mn1	4a	0	0	0	1	0.28(4)		
01	8f	0	0.6592(5)	0.0865(2)	1	1		

Table S3. Refined crystallographic parameters for: a) $Na_{0.37}MnO_2$ in the *Cmcm* space group ($R_{wp} = 4.13\%$, $R_e = 4.63\%$, $R_p = 4.39\%$); b) $Na_{0.31}MnO_2$ ($R_{wp} = 8.71\%$, $R_e = 7.92\%$, $R_p = 6.43\%$); and c) $Na_{0.82}MnO_2$ ($R_{wp} = 1.98\%$, $R_e = 2.23\%$, $R_p = 2.26\%$).

				I (,	
Atom	Wyckoff	<i>x</i> /a	<i>y</i> /b	z/c	Occupancy	Biso
Na1(e)	4c	0	0.325(3)	0.25	0.45(2)	2.6(12)
Na2(f)	4c	0	0	0.25	0.039(8)	1
Mn1	4a	0	0	0	1	0.8(2)
01	8f	0	0.6593(13)	0.0922(6)	1	1
	<i>a</i> =	2.8371(2)	Å, $b = 5.09290$	(4) Å, $c = 11.4$	049(12) Å	
		34	4 % OP4 phase	$e(P6_3/mmc)$		
Atom	Wyckoff	<i>x</i> /a	y/b	z/c	Occupancy	Biso
Na1(e)	2c	0.3333	0.6667	0.25	0.58(5)	2
Mn1	4f	0.6667	0.3333	0.3842(13)	1	0.6
01	4f	0.3333	0.6667	0.4482(13)	1	1
O2	4e	0	0	0.3340(16)	1	1
		<i>a</i> =	2.847(4) Å, c	= 20.695(6) Å		

b) Na _{0.31} MnO ₂	
66% Orthorhombic phase (Cmcm)

c) $Na_{0.82}MnO_2$ 44 % Na_1MnO_2 phase (<i>Cmcm</i>)								
Atom	Wyckoff	x/a	y/b	z/c	Occupancy	Biso		
Na1(e)	4c	0	0.2998(14)	0.25	1	0.49(10)		
Mn1	4a	0	0	0	1	0.46(7)		
01	8f	0	0.6251(6)	0.1012 (3)	1	0.19(3)		
	a = 2.3	8556(3)	Å, <i>b</i> = 5.6338(8) Å, $c = 10.80$	64(13) Å			
		4	56% Na _{2/3} MnO ₂	(Cmcm)				
Atom	Wyckoff	x/a	<i>y</i> /b	z/c	Occupancy	Biso		
Na1(e)	4c	0	0.326(2)	0.25	0.48(5)	0.7(3)		
Na2(f)	4c	0	0	0.25	0.14(3)	1		
Mn1	4a	0	0	0	1	0.77(12)		
01	8f	0	0.6451(8)	0.0963(3)	1	0.65(6)		
	a = 2.3	8350(3)	Å, <i>b</i> = 5.3319(8) Å, $c = 11.12$	92(14) Å			

2. Na_xMn_{0.95}Mg_{0.05}O₂

Table S4. Refined crystallographic parameters for: a) $Na_{0.38}Mn_{0.95}Mg_{0.05}O_2$ in the *Cmcm* space group ($R_{wp} = 3.12\%$, $R_e = 3.31\%$, $R_p = 3.30\%$); b) $Na_{0.28}Mn_{0.95}Mg_{0.05}O_2$ ($R_{wp} = 4.18\%$, $R_e = 4.63\%$, $R_p = 4.29\%$); c) $Na_{0.92}Mn_{0.95}Mg_{0.05}O_2$ ($R_{wp} = 2.29\%$, $R_e = 2.50\%$, $R_p = 2.52\%$).

	a) $Na_{0.38}Mn_{0.95}Mg_{0.05}O_2$ (<i>Cmcm</i>)									
Atom	Wyckoff	x/a	<i>y</i> /b	z/c	Occupancy	Biso				
Na1(e)	4c	0	0.343(8)	0.25	0.33(2)	0.7(4)				
Mn1/Mg1	4a	0	0	0	0.948(9)/0.052	0.05(5)				
01	8f	0	0.6663(10)	0.0867(2)	1	0.69(4)				
<i>a</i> = 2.8528(3) Å, <i>b</i> = 5.0325(14) Å, <i>c</i> = 11.3625(15) Å										

		b) N	a _{0.28} Mn _{0.95} N	$/1g_{0.05}O_2$					
60 % P2 phase (<i>P</i> 6 ₃ / <i>mmc</i>)									
Atom	Wyckoff	x/a	<i>y</i> /b	z/c	Occupancy	Biso			
Na1(f)	2b	0	0	0.25	0.15	1			
Na2(e)	2d	0.6667	0.3333	0.25	0.2	1			
Mn1/Mg1	2a	0	0	0.5	0.95/0.05	0.6			
O1	4e	0.3333	0.6667	0.0856(5)	1	0.7			
		a = 2.86	3(2) Å, $c =$	11.087(7) Å					
		40 %	OP4 phase ($P6_3/mmc)$					
Atom	Wyckoff	x/a	<i>y</i> /b	z/c	Occupancy	Biso			
Na1(e)	2c	0.3333	0.6667	0.25	0.24(5)	2			
Mn1/Mg1	4f	0.6667	0.3333	0.3921(15)	0.95/0.05	0.6			
01	4f	0.3333	0.6667	0.4296(8)	1	1			
O2	4e	0	0	0.3376(7)	1	1			
		<i>a</i> = 2.849	1(3) Å, $c =$	20.969(10) Å					

		(c) Na _{0.92} Mn _{0.95} Mg	50.05O2					
78% Orthorhombic phase (<i>Cmcm</i>)									
Atom	Wyckoff	<i>x</i> /a	y/b	z/c	Occupancy	Biso			
Na1(e)	4c	0	0.3084(8)	0.25	0.93(3)	0.36(6)			
Mn1/Mg1	4a	0	0	0	0.953(8)/0.047	0.31(6)			
O1	8f	0	0.6294(5)	0.1010(2)	1	0.38(3)			
	a = 2.86	543(3) Å	b = 5.5738(11)	Å, <i>c</i> = 10.806	54(11) Å				
		22% (Orthorhombic pha	use (Cmcm)					
Atom	Wyckoff	x/a	y/b	z/c	Occupancy	Biso			
Na1(e)	4c	0	0.332(5)	0.25	0.80(12)	0.1(3)			
Mn1/Mg1	4a	0	0	0	0.95/0.05	0.3(2)			
O1	8f	0	0.650(3)	0.1028(7)	1	0.7			
	a=2.	8756(12) Å, $b = 5.361(5)$	Å, <i>c</i> = 11.00	0(6) Å				

Figure S6. Fitted powder XRD pattern for the $Na_{0.40}Mn_{0.95}Mg_{0.05}O_2$ phase formed on discharge.

Table S5. Refined parameters for $Na_{0.40}Mn_{0.95}Mg_{0.05}O_2$ in the $P6_3/mmc$ space group. $R_{wp} = 7.41$ %, $R_e = 6.96$ %, $R_p = 3.37$ %.

$Na_{0.40}Mn_{0.95}Mg_{0.05}O_2(P6_3/mmc)$								
Atom	Wyckoff	<i>x</i> /a	<i>y</i> /b	z/c	Occupancy	B _{iso}		
Na1(e)	2d	0.6667	0.3333	0.25	0.36(5)	1.3		
Na2(f)	2a	0	0	0.25	0.03(3)	1.3		
Mn1/Mg1	2a	0	0	0.5	0.95/0.05	0.5		
O2	4e	0.3333	0.6667	0.084(3)	1	0.7		
		a = 2.8	782(11) Å, c	e = 11.413(9)	Å			

Figure S7. Fitted powder XRD pattern for the $Na_{0.60}Mn_{0.95}Mg_{0.05}O_2$ phase formed on discharge.

Table S6. Refined parameters for $Na_{0.60}Mn_{0.95}Mg_{0.05}O_2$ in the *Cmcm* space group. $R_{wp} = 7.87$ %, $R_e = 7.56$ %, $R_p = 5.91$ %.

	$Na_{0.60}Mn_{0.95}Mg_{0.05}O_2$ (<i>Cmcm</i>)									
Atom	Wyckoff	x/a	y/b	z/c	Occupancy	B _{iso}				
Na1(e)	4c	0	0.318(3)	0.25	0.399(9)	1.3				
Na2(f)	4c	0	0	0.25	0.232(7)	1.3				
Mn1/Mg1	4a	0	0	0	0.95/0.05	0.5				
O1	8f	0	0.643(3)	0.0938(11)	1	0.7				
	a = 2.8325(5) Å, $b = 5.2327(14)$ Å, $c = 11.214(3)$ Å									

3. Na_xMn_{0.9}Mg_{0.1}O₂

Table S7. a) Refined crystallographic parameters for: a) $Na_{0.40}Mn_{0.9}Mg_{0.1}O_2$ in the $P6_3/mmc$ space group ($R_{wp} = 6.21\%$, $R_e = 2.92\%$, $R_p = 4.64\%$); b) $Na_{0.32}Mn_{0.9}Mg_{0.1}O_2$ ($R_{wp} = 8.56\%$, $R_e = 3.70\%$, $R_p = 6.40\%$); and c) $Na_{0.98}Mn_{0.9}Mg_{0.1}O_2$ ($R_{wp} = 8.13\%$, $R_e = 2.45\%$, $R_p = 6.16\%$).

a) $Na_{0.40}Mn_{0.9}Mg_{0.1}O_2$ (P6 ₃ /mmc)								
Atom	Wyckoff	x/a	<i>y</i> /b	z/c	Occupancy	Biso		
Na1(f)	2b	0	0	0.25	0.09(1)	8.1(16)		
Na2(e)	2d	0.6667	0.3333	0.25	0.332(9)	4.3(3)		
Mn1/Mg1	2a	0	0	0.5	0.889(9)/0.111	0.59(1)		
O1	4e	0.3333	0.6667	0.0878(2)	1	0.81(6)		
a = 2.8801(4) Å, $c = 11.396(3)$ Å								

b) Na _{0.32} Mn _{0.9} Mg _{0.1} O ₂								
65 % P2 phase (<i>P</i> 6 ₃ / <i>mmc</i>)								
Atom	Wyckoff	<i>x</i> /a	<i>y</i> /b	z/c	Occupancy	Biso		
Na1(f)	2b	0	0	0.25	0.169(9)	1		
Na2(e)	2d	0.6667	0.3333	0.25	0.244(9)	1		
Mn1/Mg1	2a	0	0	0.5	0.9/0.1	0.18(3)		
01	4e	0.3333	0.6667	0.0884(8)	1	0.80(11)		
a = 2.8589(3) Å, $c = 11.3898(13)$ Å								
35 % OP4 phase (<i>P</i> 6 ₃ / <i>mmc</i>)								
Atom	Wyckoff	<i>x</i> /a	<i>y</i> /b	z/c	Occupancy	Biso		
Na1(e)	2c	0.3333	0.6667	0.25	0.33	2		
Mn1/Mg1	4f	0.6667	0.3333	0.3841(2)	0.9/0.1	0.6		
01	4f	0.3333	0.6667	0.4165(7)	1	1		
O2	4e	0	0	0.3365(7)	1	1		
a = 2.8561(10) Å, $c = 21.523(13)$ Å								

c) $Na_{0.98}Mn_{0.9}Mg_{0.1}O_2$							
88% Orthorhombic phase (<i>Cmcm</i>)							
Atom	Wyckoff	x/a	<i>y</i> /b	z/c	Occupancy	Biso	
Na1(e)	4c	0	0.2961(5)	0.25	1	1	
Mn1/Mg1	4a	0	0	0	0.9/0.1	0.5	
O1	8f	0	0.6266(6)	0.1000(3)	1	0.7	
<i>a</i> = 2.8693(2) Å, <i>b</i> = 5.5450(3) Å, <i>c</i> = 10.7879(5) Å							
12 % Orthorhombic phase (<i>Cmcm</i>)							
Atom	Wyckoff	x/a	<i>y</i> /b	z/c	Occupancy	Biso	
Na1(e)	4c	0	0.315(4)	0.25	0.87(3)	1	
Na2(f)	4c	0	0	0.25	0.07(2)	1	
Mn1/Mg1	4a	0	0	0	0.9/0.1	0.5	
O1	8f	0	0.648(4)	0.081(2)	1	0.7	
a = 2.8784(2) Å, $b = 5.3155(2)$ Å, $c = 10.998(1)$ Å							

Figure S8. Fitted synchrotron diffraction pattern for the Na_{0.43}Mn_{0.9}Mg_{0.1}O₂ phase formed on discharge.

Table S8. Refined parameters for the $Na_{0.43}Mn_{0.9}Mg_{0.1}O_2$ compound in the *Cmcm* space group. $R_{wp} = 5.01$ %, $R_e = 2.45$ %, $R_p = 3.85$ %.

Na _{0.43} Mn _{0.9} Mg _{0.1} O ₂ (<i>Cmcm</i>)								
Atom	Wyckoff	x/a	<i>y</i> /b	z/c	Occupancy	Biso		
Na1(e)	4c	0	0.348(4)	0.25	0.268(8)	2.5(3)		
Na2(f)	4c	0	0.973(8)	0.25	0.122(10)	1.9(7)		
Mn1/Mg1	4a	0	0	0	0.916(11)/0.084	0.36(1)		
O1	8f	0	0.6545(13)	0.0886(3)	1	0.66(6)		
<i>a</i> = 2.8746(3) Å, <i>b</i> = 5.0029(3) Å, <i>c</i> = 11.3861(7) Å								

III. NMR

1. Rationalization of the evolution of the main ²³Na resonance upon Na deintercalation from P2-Na_xMnO₂

An abrupt decrease in the average ²³Na resonance, concurrent with partial layer shearing and the formation of an OP4 phase, is observed in Na_xMnO₂ between x = 0.31 and x = 0.23 (see Figure 5 in the main text). While both octahedral and prismatic sites are present in the OP4 phase, the electrostatic energy is minimized when all Na⁺ ions occupy prismatic sites.¹ In fact, refined crystallographic parameters for Na_{0.31}MnO₂ (Table S3b) indicate that only edge-centered prismatic (P(2d)) sites are occupied in the OP4 phase. The broad high voltage ²³Na NMR signal at 1100 ppm is therefore assigned to P(2d) Na environments, an example of which is depicted in Figure S9.

Figure S9. An ideal (undistorted) edge-centered prismatic Na site: a) viewed side on, and b) viewed from above. M_1 , M_2 and M_1 ', M_2 ' correspond to inequivalent Mn sites in the first (M) and second (M') coordination shell of the Na⁺ ion. Jahn-Teller elongated Mn-O bonds are depicted in bold.

In the OP4 phase, Na⁺ ions occupy highly distorted P(2d) sites: the Mn atoms are drawn away from the empty octahedral Na layers, towards the occupied prismatic layers, resulting in shorter Na-Mn and O-Mn bonds, for all Mn atoms in the first (M) and in the second (M') coordination shells around the edge-centered Na site. Upon layer shearing, the Na-O-Mn bond angle increases (i.e. it deviates further from 90°) for Mn in the first coordination shell, while it decreases for Mn atoms in the second coordination shell (i.e. it deviates further from 180°). Since the ²³Na Fermi contact NMR shift strongly depends on the geometry of the Na-O-Mn spin density transfer pathways, such structural changes likely contribute to the decrease in the Na resonant frequency and the appearance of the broad 1100 ppm peak upon layer shearing (x ≤ 0.31).

In addition, first principles ²³Na NMR parameters computed in the α -NaMn(III)O₂ and P2-Na_{2/3}Ni_{1/3}Mn(IV)_{2/3}O₂ structures (the subject of future publications) suggest that the oxidation of Mn in position M₂' relative to the central Na (see Figure S9) leads to a > 300 ppm reduction in the net ²³Na shift. On the other hand, the oxidation of Mn in M₁, M₁', and M₂ positions is expected to increase the total ²³Na shift. The late oxidation of Mn ions in M₂' positions would allow the favorable interlayer 180° Mn³⁺-O-A-O-Mn³⁺ (A = Li⁺, Na⁺) interactions, reported in previous studies on layered mixed valence alkali manganese oxides,^{2,3} to be maintained for as long as possible upon charge. In light of this, the following scenario may be put forward: Mn ions in M₁, M₂, and M₁' positions are oxidized at the beginning of charge and lead to an increase in the net Na shift, Mn ions in M₂' sites are oxidized at the end of charge and, together with changes in the local geometry around P(2d) Na sites, lead to a reduction in the net Na shift.

2. Composition of the as-synthesized $Na_{2/3}Mn_{1-y}Mg_yO_2$ samples (y = 0.05, 0.1)

Figure S10. Comparison of the ²³Na solid-state MAS NMR spectra obtained for the assynthesized Na_{0.67}Mn_{0.95}Mg_{0.05}O₂ phase, for the reduced Na_{0.99}Mn_{0.95}Mg_{0.05}O₂ phase, and for an O3' α -NaMnO₂ sample after air exposure. The peak near 0 ppm is most probably due to residual Na₂CO₃ precursor. The asterisks (*) indicate the spinning sidebands of the main ²³Na NMR resonances introduced by fast rotation of the sample (MAS).

Figure S10 compares the ²³Na NMR spectrum of the as-synthesized Na_{0.67}Mn_{0.95}Mg_{0.05}O₂ phase with that of the reduced Na_{0.99}Mn_{0.95}Mg_{0.05}O₂ phase and that of an O3' α -NaMnO₂ sample exposed to air. α -NaMnO₂ is highly air sensitive, yet for the sake of comparison it was handled in air in a similar way as the as-synthesized Na_{0.67}Mn_{0.95}Mg_{0.05}O₂ compound (the latter is not prone to air oxidation). The above spectra clearly show that the secondary (Na_{II}) peak observed in Na_{0.67}Mn_{0.95}Mg_{0.05}O₂ does not correspond to a minor reduced phase (e.g. Na_{0.99}Mn_{0.95}Mg_{0.05}O₂), but it arises from the presence of an impurity NaMnO₂ phase in the starting material. This impurity phase quickly undergoes oxidation, as indicated by the perfect overlap with the ²³Na spectrum of the oxidized α -NaMnO₂ phase, with peaks at ca. 700 and 1800 ppm.

References

- 1. C. Delmas, C. Fouassier, and P. Hagenmuller, *Physica B+C*, 1980, **99**, 81–85.
- X. Li, X. Ma, D. Su, L. Liu, R. Chisnell, S. P. Ong, H. Chen, A. Toumar, J.-C. Idrobo, Y. Lei, J. Bai, F. Wang, J. W. Lynn, Y. S. Lee, and G. Ceder, *Nat. Mater.*, 2014, 13, 586–592.
- 3. M. E. Arroyo y de Dompablo, C. Marianetti, A. Van der Ven, and G. Ceder, *Phys. Rev. B*, 2001, **63**, 144107.