ELECTRONIC SUPPLEMENTARY INFORMATION

Promising prospects for 2D *d*²-*d*⁴ M₃C₂ transition metal carbides (MXenes) in N₂ capture and conversion into ammonia

Luis Miguel Azofra,^a Neng Li,^b Douglas R. MacFarlane^a and Chenghua Sun*^a

^aARC Centre of Excellence for Electromaterials Science (ACES), School of Chemistry, Faculty of Science, Monash University, Clayton, VIC 3800, Australia
^bState Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Hubei, 430070, China

*Author to whom correspondence should be addressed: CS: Tel: (+61) 3 9902 9916; Fax: (+61) 3 9905 4597; E-mail: <u>Chenghua.Sun@monash.edu</u>

	Pages
COMPUTATIONAL DETAILS	S2
THERMOCHEMISTRY	S2
COMPUTATION OF ACTIVATION BARRIERS	S4
OPTIMISATION OF LATTICE PARAMETERS IN MXENES	S6
COMPUTATIONAL SETTINGS	S9
GIBBS FREE ENERGIES	S10
DOS PROFILE N ₂ :V ₃ C ₂	S13
CARTESIAN COORDINATES	S13
REFERENCES	S19

COMPUTATIONAL DETAILS

The mechanism for the electrochemical conversion of N₂ into NH₃ catalysed by d^2 (Ti, Zr, and Hf), d^3 (V, Nb, and Ta), and d^4 (Cr and Mo) 2D transition metal carbides, or MXenes, with formulae M_{n+1}C_n (n = 2, M₃C₂ unit-cell), has been studied by means of density functional theory (DFT) through the generalised gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional,¹ using a plane-wave cut-off energy of 450 eV,^{2, 3} and representative 2×2×1 M₁₂C₈ super-cells. Concerning the periodic boundary conditions, the Brillouin zone was sampled by 5×5×1 *k*-points using the Monkhorst-Pack scheme. In order to avoid interactions between periodic images, a vacuum distance of 20 Å was imposed between different layers. Optimisation calculations were done using energy and force convergence limits equal to 10⁻⁴ eV/atom and |0.02| eV/Å, respectively. Thermal and zero point energy (ZPE) corrections were calculated over Γ points. Also, explicit dispersion correction terms to the energy were employed through the use of the DFT-D3 method with the standard parameters programmed by Grimme and co-workers.^{4, 5}

Since the d^3 V₃C₂ and Nb₃C₂ surfaces are demonstrated to be the most promising catalysts for the N₂ conversion into NH₃, due to the low reaction energies the exhibit, the nudge elastic band (NEB) method⁶ has been applied to these materials to find the transition states (TS) through the minimum energy path. With exception of the force convergence limit (|0.05|, |0.075| eV/Å), similar computational settings have been applied as to the location of minima and intermediate states.

All optimisation calculations have been performed through the facilities provided by the Vienna *Ab-Initio* Simulation Package (VASP, version 5.3.5).⁷⁻¹⁰

THERMOCHEMISTRY[†]

The fundamental thermodynamic relation states that:

$$G^0 = H^0 - \mathsf{T}S \tag{1}$$

at temperatures greater than 0 K and constant pressure, enthalpy for a given temperature (here T = 298.15 K) can be expressed in terms of H^0 and the heat capacity, C_P :

$$H = H^0 + \int C_P \, \mathrm{dT} \tag{2}$$

in addition, the entropy term can be expressed as the sum of the translational, rotational, vibrational, and electronic contributions as to:

$$S = S_t + S_r + S_v + S_e \tag{3}$$

and also, intrinsic zero point energy (ZPE) and extrinsic dispersion (D) corrections can be included to finally obtain:

$$G = H^{0} + \int C_{P} dT - T(S_{t} + S_{r} + S_{v} + S_{e}) + ZPE + D$$
(4)

When computing the Gibbs free energy variation between two states named as 1 and 2, and applying eqn. (4), ΔG results in:

$$\Delta G_{21} = H^0_2 + \int C_{P,2} dT - T(S_{t,2} + S_{r,2} + S_{v,2} + S_{e,2}) + ZPE_2 + D_2 - H^0_1 - \int C_{P,1} dT + T(S_{t,1} + S_{r,1} + S_{v,1} + S_{e,1}) - ZPE_1 - D_1$$
(5)

or simply:

$$\Delta G_{21} = \Delta H^0_{21} + \Delta \int (C_{\rm P})_{21} \, \mathrm{dT} - \mathrm{T} \Delta \mathrm{S}_{21} + \Delta \mathrm{ZPE}_{21} + \Delta D_{21} \tag{5}$$

Over this last equation, some approximations can be applied:

- 1. At the fundamental electronic level: $S_e \approx 0$
- 2. For gases, translational, rotational, and vibrational entropy terms have contributions that might not be neglected, and therefore: $S = S_t + S_r + S_v$
- 3. For solids and adsorbates, both $S_t \approx 0$ and $S_r \approx 0$, and therefore: $S = S_v$
- 4. Since $\int C_P dT$ is almost negligible and $\Delta \int C_P dT \approx 0$, no thermal corrections for the enthalpy have been taken into account for the ΔG calculation.

Thus, and in the present instance, the computing of the ΔG change for the NH₃ (g) chemisorption on a clean MXene surface (binding energy), can be expressed as:

$$\Delta G(\mathrm{NH}_3\cdots\mathrm{MXene}) = G(\mathrm{NH}_3\cdots\mathrm{MXene}) - G(\mathrm{MXene}) - G(\mathrm{NH}_3)$$
(6)

where:

$$G(NH_3 \cdots MXene) = H^0(NH_3 \cdots MXene) - TS_{\nu}(NH_3 \cdots MXene) + + ZPE(NH_3 \cdots MXene) + D(NH_3 \cdots MXene)$$
(6.1)

$$G(\text{MXene}) = H^0(\text{MXene}) - TS_{\nu}(\text{MXene}) + ZPE(\text{MXene}) + D(\text{MXene})$$
(6.2)

$$G(NH_3) = H^0(NH_3) - TS_t(NH_3) - TS_t(NH_3) - TS_v(NH_3) + ZPE(NH_3) + D(NH_3)$$
(6.3)

Finally, this can be also extended to the calculation of the Gibbs free reaction energy, and therefore eqn. (7) has been applied to calculate ΔG_R , where *n* is the number of H⁺/e⁻ pairs transferred and *m* the number of NH₃ molecules released, if applicable. In such a context, the chemical potential of the H⁺/e⁻ pair has the half value of the chemical potential of the dihydrogen (H₂) molecule [see eqn. (8)],¹¹ when working at standard hydrogen electrode (SHE) conditions, i.e. pH = 0, *f*(H₂) = 101,325 Pa, and *U* = 0 V, being *f*(H₂) and *U* the fugacity of H₂ and the external potential applied, respectively:

$$\Delta G_R = G(N_{2-m}H_{n-3m}\cdots MXene) + m G(NH_3) - G(MXene) - G(N_2) - -n/2 G(H_2)$$
(7)

For
$$n = 0$$
, $\Delta G_R = \Delta G_b$, binding Gibbs free energy in N₂···MXene (7.1)

$$\mu(H^+/e^-) = \frac{1}{2} \mu(H_2)$$
(8)

[†]Note: see foundations at *Quantum Chemistry*, D. A. McQuarrie and M. Hanson, Macmillan Education, 2nd revised edition, 2007.

COMPUTATION OF ACTIVATION BARRIERS

The computation of electrochemical activation energies or barriers is a challenging topic in which important efforts have been recently reported by Janik and co-workers¹² in the development of a strong, founded methodology in which an inner-sphere Marcus mechanism is

assumed. In classical chemical reactions, the TS is located with a zero charge-electron balance during the chemical process. In the case of elementary electrochemical reactions, a chemical species A, fixed on a catalytic surface (then, *A), gains one proton (H⁺) from the bulk medium and one electron (e⁻) motioning through the catalyst, in order to produce an adsorbed *AH• intermediate state:

$$^{*}A + H^{+} + e^{-} \rightarrow ^{*}AH^{\bullet}$$
⁽⁹⁾

Given the obvious difficulties with the location of the TS in such elementary electrochemical reaction, Janik and co-workers propose the location of the analogous hydrogenation (chemical) reaction in which both, the *A and *H• species (see **Table S4** below), are fixed on the surface and react in order to produce the *AH• intermediate state:

$$^{*}A + ^{*}H^{\bullet} \rightarrow ^{*}AH^{\bullet}$$
(10)

Once located, the TS for this chemical reaction and the TS for the electro-reduction of *A can be assumed as identical at one specific electrode potential, U_0 , i.e. U_0 equates the energy of the *A + *H• reactants to *A + H⁺ + e⁻, as shown in the schematic parabolic curves approximated by the Marcus theory:

Finally and attending to Butler-Volmer theory, the Gibbs free activation barrier of the electro-reduction of *A (see **Table S5** below), G_{act} , can be approximated as:

$$G_{\rm act}(U) = G^0_{act} + \beta F(U - U_0) \tag{11}$$

where G_{act}^{0} is the activation barrier for the hydrogenation reaction of *A, β the symmetry coefficient (and approximated to 0.5), F the Faraday constant, and U the applied electrode potential.

OPTIMISATION OF LATTICE PARAMETERS IN MXENES

DFT optimisation, GGA with PBE functional.¹ Plane-wave cut-off energy of 400 eV.^{2, 3} Energy and force convergence limits equal to 10^{-4} eV/atom and |0.05| eV/Å, respectively. Brillouin zone sampled by $3\times3\times1$ *k*-points using the Monkhorst-Pack scheme. Inclusion of dispersion corrections through the DFT-D2 method developed by Grimme and co-workers.¹³ $2\times2\times1$ M₁₂C₈ super-cells.

Initial $M_{12}C_8$ structures, being $|\mathbf{a}| = |\mathbf{b}| = 6.152$ Å, and $|\mathbf{c}| = 20$ Å, in order to avoid interactions between periodic images:

Optimised lattice parameters, in Å, for the referred settings. (In all cases, |c| = 20 Å):

	Ti ₃ C ₂	Zr_3C_2	Hf_3C_2	V_3C_2	Nb ₃ C ₂	Ta ₃ C ₂	Cr_3C_2	Mo_3C_2
a = b	6.213	6.644	6.582	5.906	6.336	6.152	5.660	6.090

The γ scaling factor is applied for the searching of the optimised lattice parameters, so that:

$$\gamma \boldsymbol{a} = \gamma \boldsymbol{a}_{\boldsymbol{x}} + \gamma \boldsymbol{a}_{\boldsymbol{y}} + \gamma \boldsymbol{a}_{\boldsymbol{z}} = \gamma \cdot 6.125 \boldsymbol{i} \tag{12}$$

$$\gamma \boldsymbol{b} = \gamma \boldsymbol{b}_{\boldsymbol{x}} + \gamma \boldsymbol{b}_{\boldsymbol{y}} + \gamma \boldsymbol{b}_{\boldsymbol{z}} = \gamma \cdot 3.076 \boldsymbol{i} + \gamma \cdot 5.328 \boldsymbol{j}$$
(13)

$$\gamma \boldsymbol{a} = \gamma \boldsymbol{a}_{\boldsymbol{x}} + \gamma \boldsymbol{a}_{\boldsymbol{y}} + \gamma \boldsymbol{a}_{\boldsymbol{z}} = \gamma \boldsymbol{a}_{\boldsymbol{z}} = 20\boldsymbol{k}, \text{ in all cases}$$
(14)

In each case, representing the electronic energy, E, vs. γ :

 $Hf_3C_2, \gamma_{\Box\Box\Box} = 1.07$

 $V_3C_2, \gamma_{\square\square\square} = 0.96$

Starting geometry $2 \times 2 \times 1$ M₁₂C₈ super-cell, $\gamma = 1$:

a b c	6.15180016 3.07590008 0.00000000	0.00000000 5.32761521 0.00000000	0.0000000 0.0000000 20.0000000
Μ	6.07456776	0.01439335	7.56729778
М	2.99888805	1.79037091	5.11470004
М	2.99868780	0.01436766	7.56730216
М	6.07469131	1.79037837	5.11473081
М	7.61253247	2.67823860	7.56735586
М	4.53679295	4.45410237	5.11467368
М	4.53658237	2.67817067	7.56717284
М	7.61269262	4.45416133	5.11471321
М	1.46059508	0.90206131	10.02006145
М	4.53648978	0.90201163	10.01999590

Μ	2.99849559	3.56587332	10.01998955
Μ	6.07449396	3.56586832	10.01999635
С	2.99856492	1.79009700	8.90183698
С	1.46087886	0.90250290	6.23292953
С	6.07436363	1.79010582	8.90182083
С	4.53676904	0.90244681	6.23306926
С	4.53646569	4.45384988	8.90186354
С	2.99877127	3.56631689	6.23298490
С	7.61235866	4.45389820	8.90165859
С	6.07477970	3.56631959	6.23304764

COMPUTATIONAL SETTINGS

Settings DFT/DFT-D2 optimisation	Settings DFT+U/DFT-D3 optimisation
M ₃ C ₂ lattice parameters optimisation	N ₂ conversion into NH ₃ mechanism
PREC = Medium	PREC = Medium
ENCUT = 400	ENCUT = 450
EDIFF = 1E-4	EDIFF = 1E-4
EDIFFG = -0.05	EDIFFG = -0.02
IBRION = 1	IBRION = 2
ISIF = 2	ISIF = 2
ISMEAR = 0	ISMEAR = 0
SIGMA = 0.02	SIGMA = 0.02
POTIM = 0.2	POTIM = 0.2
LREAL = Auto	
ALGO = Fast	IVDW = 11
	VDW_RADIUS = 50.2
LVDW = .TRUE.	VDW_CNRADIUS = 20.0
	VDW_S6 = 14.0
	VDW_S8 = 16.0
	VDW_SR = 1.0

Pseudo-potentials applied:

Nitrogen: PAW_PBE N 08Apr2002	Hafnium: PAW_PBE Hf_pv 06Sep2000				
Hydrogen: PAW_PBE H 15Jun2001	Vanadium: PAW_PBE V_pv 07Sep2000				
Oxygen: PAW_PBE O 08Apr2002	Niobium: PAW_PBE Nb_pv 08Apr2002				
Titanium: PAW_PBE Ti_pv 07Sep2000	Tantalum: PAW_PBE Ta_pv 07Sep2000				
Zirconium: PAW Zr_sv_GW 07Apr2010	Chromium: PAW_PBE Cr_pv 02Aug2007				
Molybdenum: PAW_PBE Mo_pv 04Feb2005					

GIBBS FREE ENERGIES

Table S1. Thermodynamic quantities, in eV, for the isolated N_2 , CO_2 , H_2O , H_2 , and NH_3 species in the gas phase. (T= 298.15 K and f= 101,325 Pa).

Species	$H^0 + D$	$-TS_t$	$-TS_r$	$-TS_v$	ZPE	G
$N_2(g)^a$	-16.61	-0.45	-0.13	0.00(0)	0.15	-17.04
$\operatorname{CO}_2(g)^a$	-22.92	-0.47	-0.17	-0.00(5)	0.27	-23.29
$H_2O(g)^a$	-14.16	-0.43	-0.12	0.00(0)	0.56	-14.16
$\mathrm{H}_{2}\left(\mathbf{g}\right)^{a}$	-6.77	-0.35	-0.04	0.00(0)	0.27	-6.89
$NH_3(g)^a$	-19.50	-0.43	-0.13	-0.00(2)	0.58	-19.49

^aExperimental values from NIST database (<u>http://cccbdb.nist.gov</u>):

N₂ (g): $d_{NN} = 1.098$ Å, $v_1 (\Sigma_g) = 2,359$ cm⁻¹ CO₂ (g): $d_{CO} = 1.162$ Å, $A_{OCO} = 180.0^{\circ}$, $v_1 (\Sigma_g) = 1,333$ cm⁻¹, $v_2 (\Sigma_u) = 2,349$ cm⁻¹, $v_3 (\Pi_u) = 667$ cm⁻¹ H₂O (g): $d_{OH} = 0.958$ Å, $A_{HOH} = 104.5^{\circ}$, $v_1 (A_1) = 3,657$ cm⁻¹, $v_2 (A_1) = 1,595$ cm⁻¹, $v_3 (B_2) = 3,756$ cm⁻¹ H₂ (g): $d_{HH} = 0.741$ Å, $v_1 (\Sigma_g) = 4,401$ cm⁻¹ NH₃ (g): $d_{NH} = 1.012$ Å, $A_{HNH} = 106.67^{\circ}$, $A_{XNH} = 112.15^{\circ}$, $v_1 (A_1) = 3,337$ cm⁻¹, $v_2 (A_1) = 950$ cm⁻¹, $v_3 (E) = 3,444$ cm⁻¹, $v_4 (E) = 1,627$ cm⁻¹

Table S2. Gibbs free energies at 298.15 K (ZPE and D3 corrections applied), in eV, corresponding to the chemisorbed CO_2 and H_2O species on the M_3C_2 MXene (M = Ti, Zr, Hf, V, Nb, Ta, Cr, and Mo) surfaces.

M ₁₂ C ₈ super-cell		d^2			d^3		G	[4
Species	Ti	Zr	Hf	V	Nb	Та	Cr	Мо
CO_2	-205.69	-236.24	-231.26	-207.37	-219.94	a	-198.48	-213.44
H_2O	-194.89	-225.68	-220.75	-197.66	-209.71	-232.21	-189.03	-204.00

^{*a*}For Ta₃C₂, no chemisorbed CO₂ minimum was obtained.

Table S3. Gibbs free energies at 298.15 K (ZPE and D3 corrections applied), in eV, corresponding to the different states along the N_2 conversion mechanism (Schemes 1 and Fig 2) catalysed by M_3C_2 MXenes (M = Ti, Zr, Hf, V, Nb, Ta, Cr, and Mo).

$M_{12}C_8$ super-cell		d^2			d^3		a	[4
Species	Ti	Zr	Hf	V	Nb	Та	Cr	Mo
clean surface	-179.38	-209.85	-205.39	-182.54	-194.58	-217.03	-174.08	-189.29
N_2	-198.99	-229.30	-224.55	-201.76	-214.06	-236.67	-193.18	-208.45
N–NH●	-202.91	-233.72	-229.06	-205.36	-217.79	-240.27	-196.72	-211.20
HN–NH	-206.46	-237.02	-232.05	-208.61	-221.01	-243.86	-200.07	-215.25
$N-NH_2$	-205.64	-236.42	-231.81	-208.83	-220.99	-243.91	-200.46	-215.81
N●	-190.11	-220.79	-216.16	-192.58	-204.95	-227.50	-184.61	-199.65
$HN-NH_2\bullet$	-208.45	-239.14	-234.74	-211.57	-223.76	-246.54	-203.06	-217.99
NH	-194.10	-224.89	-220.45	-196.52	-209.11	-231.72	-188.33	-203.40
H_2N-NH_2	-210.22	-240.50	-235.99	-213.72	-225.67	-248.11	-205.28	-220.06
NH₂●	-197.50	-228.02	-223.63	-199.83	-212.17	-234.71	-191.73	-206.49
NH_3	-199.67	-229.98	-225.56	-202.95	-215.23	-237.16	-194.72	-209.59

Table S4. Gibbs free energies at 298.15 K (ZPE and D3 corrections applied), in eV, corresponding to the different states **for the hydrogenation of the MXene surface** along the N_2 conversion mechanism catalysed by M_3C_2 MXenes (M = Ti, Zr, Hf, V, Nb, Ta, Cr, and Mo).

M ₁₂ C ₈ super-cell	d^2				d^3			d^4	
Species	Ti	Zr	Hf	V	Nb	Та	Cr	Мо	
$N_2 + H \bullet$	-203.25	-231.98	-226.25	-205.95	-218.07	-241.54	-197.71	-211.84	
$N-NH \bullet + H \bullet$	-206.97	-234.60	-228.86	-209.81	-221.53	-244.25	-200.30	-215.66	
$N_2H_2^a + H \bullet$	-210.63	-239.59	-234.12	-212.70	-225.39	-248.60	-204.41	-219.36	
$N_2H_3 \bullet / N \bullet^b + H \bullet$	-213.25	-242.15	-237.07	-196.71	-208.61	-231.14	-188.48	-204.09	
$\rm NH + H \bullet$	-198.70	-229.60	-223.13	-200.33	-213.08	-235.30	-192.22	-207.00	
$NH_2 \bullet + H \bullet$	-202.33	-233.11	-226.07	-204.91	-216.90	-239.34	-195.51	-210.25	

^{*a*}For d^2 MXenes (M = Ti, Zr, and Hf), the second reduced-species for its minimum energy path corresponds to the HN–NH state, while for the rest, to N–NH₂.

^{*b*}For d^2 MXenes (M = Ti, Zr, and Hf), the third reduced-species for its minimum energy path corresponds to the HN–NH₂• state, while for the rest, to N•.

Table S5. Gibbs free energies at 298.15 K (ZPE and D3 corrections applied), in eV, and U_0 potentials, in V, corresponding to the TSs along the N₂ conversion mechanism catalysed by V₃C₂ and Nb₃C₂ MXenes.

M ₁₂ C ₈ super-cell	V_3C_2		Nb_3C_2		
Species	G	U_0	G	U_0	
TS1	-204.93	0.74	-216.93	0.57	
TS2	-208.98	1.00	-220.48	0.29	
TS3	-196.67	0.49	-209.09	0.71	
TS4	-199.90	0.37	-212.03	0.53	

DOS PROFILE N2:V3C2

In black, blue, and red colours, the projected DOS profiles for the $N_2:V_3C_2$ system, and their respective V_3C_2 and N_2 contributions, being N_2 in a chemisorbed form.

CARTESIAN COORDINATES

Structures ($2 \times 2 \times 1$ super-cell) corresponding to the minimum energy path for the N₂ conversion into NH₃ catalysed by V₃C₂ MXene at the DFT+D3 computational level

In all cases:

а	5.90572815	0.00000000	0.00000000
b	2.95286407	5.11451061	0.0000000
C	0.0000000	0.00000000	20.00000000

Clean surface

V	5.83136883	0.01375244	7.56694182
V	2.87876649	1.71807806	5.36838288
V	2.87832707	0.01372153	7.56699766
V	5.83162690	1.71806541	5.36829255
V	7.30769071	2.57088281	7.56706265
V	4.35519795	4.27533623	5.36843700
V	4.35485964	2.57101083	7,56682538
V	7.30805519	4.27537061	5.36823127
V	1.40314999	0.86688736	9.76639836
V	4 35601370	0 86687314	9 76673226
V	2 87959551	3 42410489	9 76676071
V	5 83243758	3 42411676	9 76658984
, C	2 87852123	1 71899779	8 81834073
C	1 /018//07	0 86553981	6 31650213
C	5 83171031	1 71911675	8 818/1193
C C	1 35457335	0 86562081	6 31655000
C C	4.35500517	1 27652180	8 81838474
C	4.55522517 2.97920166	2 1002100	6 216500474
	7 207050100	J.42203770 A 37625043	0.31030342
C	5 92000/67	2 10000027	6 21655919
C	5.05055407	5.42292057	0.31033010
	0.00010506	0 00000567	7 46474700
V	0.02918526	0.0093356/	7.461/1/93
V	2.99834435	1./19/0516	5.16924/93
V	2.93598504	0.00223164	/.4585914/
V	5./9652/64	1.76109092	5.16465/25
V	1.4/649168	2.5162/846	/.4620111/
V	4.43330315	4.20508181	5.16918308
V	4.442/2513	2.541/3669	/.48/80621
V	7.42780006	4.22877509	5.25391973
V	1.48530880	0.83935842	9.73191006
V	4.43362227	0.83586893	9.73010965
V	2.95816571	3.39878609	9.72956704
V	5.91537704	3.40237402	9.73002851
C	2.95649822	1.69032199	8.74351571
С	1.45968385	0.85512242	6.15339478
C	5.91331334	1.69278507	8.75111595
С	4.43258956	0.83498062	6.24247634
С	4.43705806	4.25469425	8.74340212
C	2.96878736	3.39336901	6.27535885
C	7.38729881	4.25152586	8.74940863
С	5.91628948	3.40488500	6.24261049
Ν	4.53772106	2.48812391	3.87990100
Ν	3.45795333	3.11144912	3.57767245
V	6.01134179	0.38218700	7.35266864
V	3.19209646	2.14013535	4.98673650
V	3 00763138	0 37765296	7 33249835
V	5.91521785	2.03363546	5.08426152
-			2.20.20102

 N_2

TS1

V V V V V V V V	7.45092815 4.46936869 4.51672415 7.48231033 1.55681679 4.49763850 3.01025830 6.00426048	2.88964433 4.58137655 2.92939319 4.66071597 1.23361036 1.21291183 3.77575158 3.78556520	7.29851364 5.13222222 7.36728480 5.12416898 9.55881560 9.56668208 9.55874816 9.55780902
c	1.59039127	1.23131951	5.99731723
C	5.98270850	2.07520252	8.61635421
C	4.51063115	1.23872865	6.20444250
C	4.50050855	3,78082160	6.17849956
C	7.46209379	4.63334623	8.57315649
C	5.96327456	3.76234657	6.07257016
Ν	4.73353074	1.96108003	3.32279222
Ν	4.57574774	0.80368609	3.72312453
Н	3.49235999	3.63636286	3.87630695
V	5.67132952	0.02154869	7.54853961
V	2.80176152	1.73065616	5.29861405
V	2.66013122	0.02097307	7.54774494
V	5.529351/6	1./3092318	5.298526/0
V	/.11/35459 / 16519266	2.57259002	5 32/130779
V	4.10519200	2 61645071	7 57668053
v	7.11942227	4.40677453	5.29957526
V	1.21293522	0.90252586	9.75260366
V	4.16414543	0.87586218	9.76623303
V	2.66774321	3.43830703	9.76334116
V	5.66233693	3.43984344	9.76354165
C	2.68848178	1.73776207	8.79832469
C	1.21280309	0.8/191305	6.182154/3
C	5.04210090	1./3/840/3	8.8000/514
C	4.10509200	4 29636697	8 83855962
C	2.69497659	3.44928004	6.30395269
C	7.11836972	4.29037969	8.77412169
С	5.63665994	3.44985178	6.30293702
Ν	4.16609994	1.95934366	3.70957662
Ν	4.16708289	0.62035891	3.96331164
Н	4.16741278	2.18321497	2.71049729
V	8.37972050	5.07011386	7.24834551
V	2.51300980	1.73248292	5.01151359
V	5.39265071	5.0//94164	/.24293657
V	5.4129/952	1./0/82993	4.99529658
v	2 03860EE1	2.40051813 / 0733375/	2 02120002
v	TCCADOCC.C	7.0/333234	2.02422002

N–NH•

TS2

V	3.93455373	2.46897170	7.28975123
V	6.88026540	4.18740406	5.10696308
V	0.98030809	0.78420012	9.48406601
V	3.93464987	0.78410810	9.48991993
V	2.45967296	3.34619263	9.48635826
V	5.40920578	3.34370893	9.48102658
С	2.45680515	1.63734525	8.53427469
С	0.98750853	0.76679524	5.99614605
С	5.41288936	1.63613297	8.53091974
С	3.95178104	0.79168054	6.06777501
С	3.93289042	4.19656718	8.53318852
С	2.46769062	3.35651125	6.08444997
С	6.88617896	4.19549990	8.55098900
С	5.41418586	3.35235997	6.09544305
Ν	3.88815802	2.51225459	3.75799598
Ν	4.87307977	1.94940791	3.02252901
Н	4.57923854	1.05852781	2.58456851
Н	6.94100375	2.54896377	4.13754045

 $N-NH_2$

V	8.51920276	5.10301367	7.40766145
V	2.66752432	1.74379053	5.16693508
V	5.51066517	5.11386987	7.40634978
V	5.50727521	1.70758518	5.16511392
V	7.02417839	2.51436245	7.40719637
V	4.05566470	4.14942105	5.16819722
V	4.06345505	2.53969317	7.43951371
V	6.99466169	4.25802856	5.26136810
V	1.10768844	0.83539537	9.62914977
V	4.06800927	0.83435107	9.62942459
V	2.58735266	3.39052591	9.63758360
V	5.54149028	3.38664933	9.62981968
С	2.58785308	1.68817065	8.67923045
С	1.11442558	0.83431945	6.14411292
С	5.54320017	1.68498566	8.66964450
С	4.06900505	0.83407048	6.22111422
С	4.06279000	4.24252376	8.67940932
С	2.58310240	3.39522858	6.21636492
С	7.01888968	4.24242259	8.69608923
С	5.54425479	3.38920128	6.22133810
Ν	3.96435618	2.60091494	3.91035090
Ν	4.97734722	2.02302639	3.12207316
Н	4.65071464	1.22562048	2.56479615
Н	5.50530619	2.71284407	2.57545158
V	8.65372393	5.06284774	7.51991125
V	2.81022431	1.68816885	5.26449906
V	5.63449339	5.06211855	7.52011089
V	5.57329844	1.68840923	5.26381180
V	7.14347101	2.44773465	7.52002016
V	4.19201436	4.08131877	5.26415402

N∙

V	4 19111061	2 48607240	7 55736933
V	7 1/205501	1 10000257	5 20816070
V	7.14393301	4.19000337	5.59610970
V	1.23/82883	0./8132983	9./4/65/38
V	4.19063523	0.78330357	9.74662303
V	2.71583588	3.33765138	9.74648249
V	5.66526943	3.33755346	9.74674694
С	2.71317563	1.63296520	8.79550081
С	1.23851053	0.78119680	6.26728393
С	5.66852086	1.63300800	8.79566279
С	4.19156380	0.77491331	6.34387825
С	4.19088659	4.19239789	8.79555929
С	2.70939591	3.34174814	6.34367336
С	7.14366341	4.19096094	8.83293910
С	5.67315080	3.34139359	6.34396558
Ν	4.19106692	2.48607544	4.20295029

TS3

NH

V C C C C C C C N H

8.56845479	5.05483421	7.49079147
2.71974533	1.70042261	5.22140691
5.55203255	5.05444655	7.49025416
5.49462105	1.69675902	5.22343719
7.06053097	2.41740619	7.50921853
4.11143853	4.06543057	5.24071461
4.10765245	2.46677995	7.53132435
7.06319390	4.11929567	5.38045287
1.15352621	0.76184994	9.71950914
4.10635651	0.76065151	9.72231072
2.62848536	3.32858363	9.72250644
5.58477219	3.32966251	9.72206371
2.63079798	1.61472930	8.77265885
1.15507940	0.76574370	6.21702738
5.58263973	1.61571835	8.77312580
4.10910708	0.76804937	6.28047432
4.10594827	4.17513720	8.76508729
2.63743985	3.32204787	6.33418139
7.06067060	4.17697838	8.78257732
5.58397144	3.32020776	6.33315193
4.10817100	2.48523065	4.17795838
7.09374306	3.41394304	3.82998299
9 65006557	E 0E702700	7 51571104

V	8.65006557	5.05793780	7.51571184
V	2.78349258	1.67071675	5.27896678
V	5.63604983	5.05703201	7.51573790
V	5.59651572	1.67090803	5.27840916
V	7.14227686	2.44760164	7.51563124
V	4.19016440	4.10654640	5.27835688
V	4.19002338	2.48305093	7.54495797
V	7.14271169	4.18772805	5.37300883
V	1.23693294	0.77824438	9.74519381
V	4.18964262	0.78032431	9.73768813
V	2.71502268	3.33429316	9.73764944

V	5.66428232	3.33431012	9.73804156
С	2.71154511	1.62930365	8.78526741
С	1.23720008	0.77757769	6.26051528
С	5.66816212	1.62942772	8.78548615
С	4.19019281	0.77166533	6.32165341
С	4.18995606	4.18990225	8.78556197
С	2.70833856	3.33838606	6.32132471
С	7.14271356	4.18774467	8.81514112
С	5.67169176	3.33818555	6.32140893
Ν	4.18977553	2.48033953	4.04040363
Н	4.18998808	2.47879570	3.01726234
V	8.43754112	4.97529882	7.47958014
V	2.65760700	1.59737520	5.20970050
V	5.43963870	4.98040063	7.47953984
V	5.42892313	1.57249598	5.27315727
V	6.96187668	2.37322637	7.47752364
V	3,97605560	4.04542993	5.26518221
V	3,99697385	2.39505180	7.51189747
V	6.94585760	4.10007429	5.32109830
V	1.03587003	0.69617088	9.70397388
V	3 99334039	0.69369958	9 70398746
V	2 51815987	3 25634600	9 69967233
V	5 47311663	3 25420758	9 69966453
C C	2 51514540	1 54760738	8 75270652
C C	1 07030/38	0 71701083	6 10115026
C	5 47206497	1 5/71/01905	8 74604525
	2 00/02722	1.54/10555	6 20775040
	2 00402772	0.00077745 1 11007244	0.23773340
	3.55402557 3.51603335	4.1122/344 2.24610921	6.74500725
	2.51092555	3.24019831 4 10576006	0.2/094080
	6.94403404 F 47930360	4.105/0000	6./5954/96
	5.4/830200	3.20003101	
N	4.1/581444	2.54485423	3.89/3/515
Н	5.54190269	2.45381594	3.//089699
н	4.06223623	2.60113452	2.88293525
V	8.71911421	5.00813392	7.56047847
V	2.84521202	1.62372621	5.31574639
V	5.74218144	4.99543973	7.54799300
V	5.76315618	1.57362633	5.35744269
V	7.21959312	2.41064498	7.56052249
V	4.26153266	4.07612350	5.31674815
V	4.28981803	2.42395398	7.57191849
V	7.22157540	4.14119167	5.39562391
V	1.33406610	0.72069385	9.76895161
V	4,27563139	0.72057303	9.77019493
V	2.80612341	3,28055116	9,76431268
V	5.75780776	3,28786682	9.77019233
C	2,80110926	1.57464533	8.80784143
C	1 32001105	0 729/6783	6 27822528
~		5.,2240,03	0.2,020020

TS4

NH₂●

С	5.75479282	1.57812493	8.82940319
С	4.27909840	0.74026779	6.32279182
С	4.28097073	4.13786176	8.80775208
С	2.79065674	3.28981658	6.35873177
С	7.23211003	4.13489266	8.81620650
С	5.74302005	3.27528960	6.32317479
Ν	3.58316396	2.83521783	3.72876051
Н	4.29141100	2.42702697	3.10823789
Н	2.88936717	3.24084928	3.09242146
V	2.87960219	1.72005413	5.33194476
V	2.87960538	0.01644204	7.56805022
V	5.83258174	1.71757999	5.38206665
V	7.31039835	2.57147035	7.56790112
V	4.35482479	4.27872060	5.38222969
V	4.35468221	2.57136933	7.56793386
V	7.30964820	4.27816719	5.38250271
V	1.40776583	0.87015355	9.77311908
V	4.35365303	0.87006893	9.77314827
V	2.88087570	3.42034563	9.77311972
V	5.83380052	3.42510331	9.77349175
С	2.88009689	1.71969404	8.81675634
С	1.41051091	0.87179457	6.31877609
С	5.83297097	1.71887073	8.82200452
С	4.34809162	0.87170035	6.31855935
С	4.35561752	4.27767279	8.82242981
С	2.87935969	3.41582379	6.31789498
С	7.31052532	4.27768453	8.82226098
С	5.83185190	3.42408382	6.34020802
Ν	2.88795072	1.73722201	3.15144355
Н	2.03996196	1.28596133	2.79373558
Н	2.92076614	2.70603107	2.81822800
Н	3.71079899	1.23369751	2.80538522

REFERENCES

- 1. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- 2. P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953.

NH₃

- 3. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758.
- 4. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 5. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, **32**, 1456.
- 6. G. Mills, H. Jónsson and G. K. Schenter, *Surf. Sci.*, 1995, **324**, 305.
- 7. G. Kresse and J. Hafner, *Phys. Rev. B*, 1993, **47**, 558.
- 8. G. Kresse and J. Hafner, *Phys. Rev. B*, 1994, **49**, 14251.
- 9. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169.
- 10. G. Kresse and J. Furthmüller, Comput. Mat. Sci., 1996, 6, 15.
- 11. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, *Energy Environ. Sci.*, 2010, **3**, 1311.

- 12. X. Nie, M. R. Esopi, M. J. Janik and A. Asthagiri, *Angew. Chem. Int. Ed.*, 2013, **52**, 2459.
- 13. J. Harl, L. Schimka and G. Kresse, *Phys. Rev. B*, 2010, **81**, 115126.