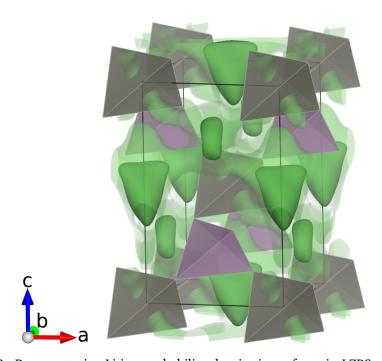
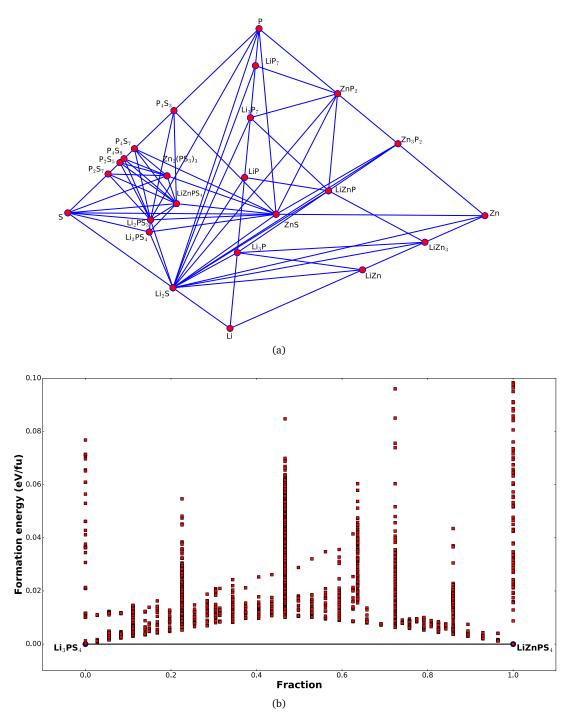
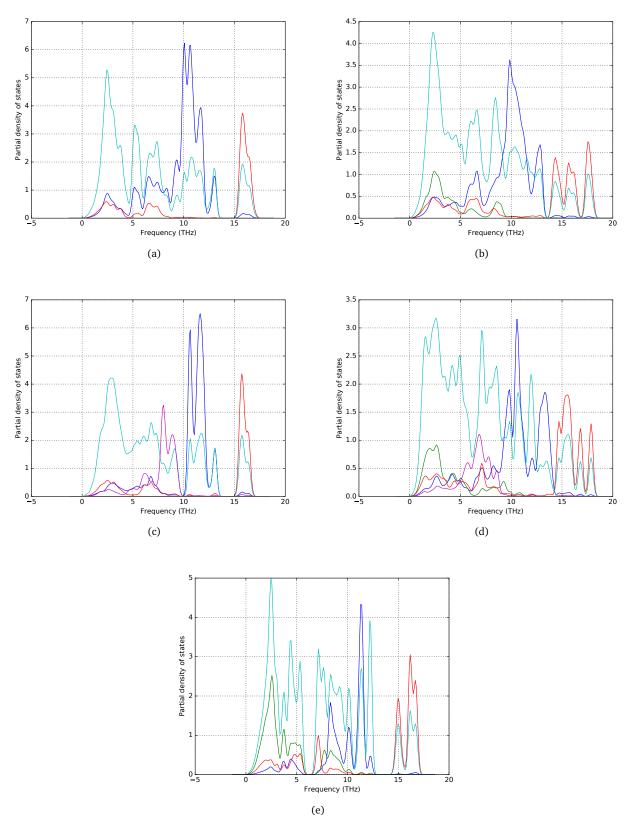
Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2016

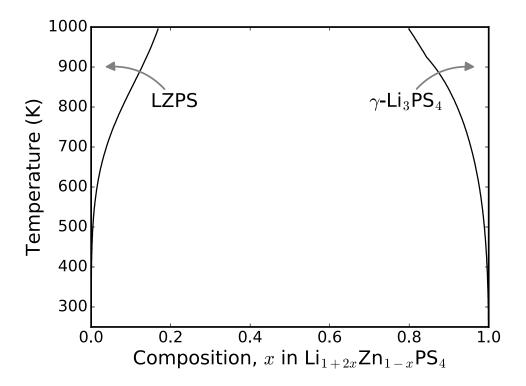
Supplementary information for: Design of $\text{Li}_{1+2x}\text{Zn}_{1-x}\text{PS}_4$, a new lithium ion conductor


William D. Richards^a, Yan Wang^a, Lincoln J. Miara^b, Jae Chul Kim^{ac}, and Gerbrand Ceder^{acd*}

^aDepartment of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139


^bSamsung Advanced Institute of Technology - USA, 255 Main St., Suite 702, Cambridge, MA 02142 ^cMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720 ^dDepartment of Materials Science and Engineering, University of California, Berkeley CA 94720 ^{*}Email: gceder@berkeley.edu


Supplementary Figure 1: Ideal body-centered-tetragonal (bct) lattice (red) with an a/c ratio of 0.90 overlaid on the sulfur framework (yellow) of $\text{Li}_{1+2x}\text{Zn}_{1-x}\text{PS}_4$. Transparent tetrahedra are: PS₄ (purple), ZnS₄ (grey), and LiS₄ (green). The sulfur atoms are each displaced 0.29 Å from the idealized bct position


Supplementary Figure 2: Representative Li-ion probability density isosurfaces in LZPS, calculated from AIMD of $\text{Li}_{1.25}\text{Zn}_{0.875}\text{PS}_4$ at 800 K and projected onto the conventional cell. Since there is some Li_{Zn} occupancy, some diffusion occurs through the Zn site (grey tetrahedra). The high-probability regions (dark green) correspond to the tetrahedral lithium sites shown in Figure 1b. The lower probability (lighter transparent green) regions show the Li-ion conducting pathways through the crystal structure.

Supplementary Figure 3: a) DFT calculated 0 K phase diagram of the Li-Zn-P-S chemical system. Note the tieline between the $LiZnS_4$ and Li_3PS_4 compositions indicating their coexistence. b) DFT calculated formation energies of calculated structures along the $LiZnS_4$ - Li_3PS_4 tieline. These structures were generated either with the cluster expansion Monte Carlo simulation or the ionic substitution algorithm from known materials in other chemical systems.

Supplementary Figure 4: Partial phonon densities of states for a) $Pmn2_1 Li_3PS_4$, b) $Pmn2_1 Li_2Zn_{0.5}PS_4$, c) $I\bar{4}$ - Li_3PS_4 , d) $I\bar{4}$ $Li_2Zn_{0.5}PS_4$, and e) $I\bar{4}$ $LiZnPS_4$. Blue – Li in the Li/Zn layer or in the $Pmn2_1$ structure. Green – Zn. Red – P. Teal – S. Purple – Li in the Li/P layer in the $I\bar{4}$ structure.

Supplementary Figure 5: Pseudo-binary phase diagram of the $LiZnPS_4-\gamma-Li_3PS_4$ system, generated from cluster expansion Monte Carlo calculations excluding the phonon contributions to the free energy.