Electronic Supplementary Information for:

An efficient hydrogen evolution catalyst composed of palladium phosphorous sulphide $(PdP_{\sim 0.33}S_{\sim 1.67})$ and twin nanocrystal $Zn_{0.5}Cd_{0.5}S$ solid solution with both homo- and hetero-junctions

Jingang Song, ^a Haitao Zhao, ^a Ranran Sun, ^b Xiyou Li, ^{a, b,*} Dejun Sun ^{a,*}

^aDepartment of Chemistry, Shandong University, Jinan, China, 250100; ^bDepartment of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, China, 266580

Fig. S1 SEM (A), TEM (B), HRTEM (C) and SAED (inset of fig. S1 C) images of twinned $Zn_{0.5}Cd_{0.5}S$ solid solution.

Table S1. The experimental data of inductively coupled plasma atomic emission spectrometry (ICP-AES) of twinned $Zn_{0.5}Cd_{0.5}S$ and $Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$.

1	5 (,	0.	0.0	0.5	0.5	0.55 1.07	
Sample	Weight percentage (wt %)				А	tomic perc	entage (at %)
	Zn	Cd	S	Pd	Zn	Cd	S	Pd
$Zn_{0.5}Cd_{0.5}S$	27.25	46.71	26.04		25.31	25.25	49.44	
Zn _{0.5} Cd _{0.5} S/	26.45	45.38	26.32	1.68	24.48	24.44	49.79	0.99
$PdP_{\sim 0.33}S_{\sim 1.67}$								

Table S2. The experimental data of electron dispersive spectrum (EDS) of twinned $Zn_{0.5}Cd_{0.5}S$ and $Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$.

Sample	Weight percentage (wt %)						Atomic p	ercentage	e (at %)	
	Zn	Cd	S	Pd	Р	Zn	Cd	S	Pd	Р
$Zn_{0.5}Cd_{0.5}S$	27.39	46.52	26.09			25.41	25.11	49.47		
Zn _{0.5} Cd _{0.5} S/	26.60	45.20	26.39	1.65	0.16	24.59	24.31	49.86	0.94	0.31
$PdP_{\sim 0.33}S_{\sim 1.67}$										

Fig. S2 TG and DTA curves of bis(triphenylphosphine) palladium(II) dichloride (Pd(PPh₃)₂Cl₂) in argon.

Fig. S3 IR spectra of $Zn_{0.5}Cd_{0.5}S$ (black), $Zn_{0.5}Cd_{0.5}S/Pd(PPh_3)_2Cl_2$ (red), $Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$ (green).

Fig. S4 STEM images of $Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$.

Fig. S5 HRTEM images of twinned $Zn_{0.5}Cd_{0.5}S$ (A) and $Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$ (B, C, D) photocatalysts. The PdP_ $\sim 0.33}S_{\sim 1.67}$ particles on the surface of twinned $Zn_{0.5}Cd_{0.5}S$ solid solution have been marked by red rings on B, C, and D.

Fig. S6 The X-ray diffraction patterns of twinned Zn_{0.5}Cd_{0.5}S calcined by 372 °C.

Fig. S7 The overall survey XPS spectrum of twinned $Zn_{0.5}Cd_{0.5}S$ (black) and $Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$ (red) photocatalysts.

Fig. S8 The rate of H₂ evolution of $Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$ samples (1~6) loaded with various amounts of PdP_{\sim 0.33}S_{\sim 1.67} cocatalyst.

Table S3. The rate of H₂ evolution (µmol h⁻¹ mg⁻¹) under visible light ($\lambda > 420$ nm) irradiation after 3 hours using 1 mg photocatalyst for twinned Zn_{0.5}Cd_{0.5}S and Zn_{0.5}Cd_{0.5}S/PdP_{~0.33}S_{~1.67} in different sacrificial reagents.

	Lactic acid	Ascorbic acid	TEOA	Na ₂ S/Na ₂ SO ₃
Zn _{0.5} Cd _{0.5} S	8.05	5.55	4.34	46.60
$Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$	197.93	372.12	91.81	246.04

Fig. S9 The rate of H₂ evolution (A) and stability (B) test of twinned $Zn_{0.5}Cd_{0.5}S$ (solid circle) and $Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$ (solid square) photocatalysts under visible light ($\lambda > 420$ nm) irradiation after 3 hours using **10 mg** photocatalyst in 20% lactic acid (pH = 1.64) (black), 0.75M ascorbic acid (pH = 2.39) (red), 20% TEOA (pH = 12.59) (green), 0.7M Na₂S and 0.5M Na₂SO₃ (pH = 13.86) (blue) sacrificial reagents

aqueous solution.

Table S4. The rate of H₂ evolution (μ mol h⁻¹ mg⁻¹) for twinned Zn_{0.5}Cd_{0.5}S and Zn_{0.5}Cd_{0.5}S/PdP_{~0.33}S_{~1.67} under visible light ($\lambda > 420$ nm) irradiation after 3 hours using **10 mg** photocatalyst in different sacrificial reagents.

	Lactic acid	Ascorbic acid	TEOA	Na ₂ S/Na ₂ SO ₃
$Zn_{0.5}Cd_{0.5}S$	6.44	4.81	3.01	37.29
$Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$	166.59	339.80	68.05	206.26

Fig. S10 Time courses of H₂ evolution of twinned $Zn_{0.5}Cd_{0.5}S$ (solid circle) and $Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$ (solid square) photocatalysts under monochromatic 420 nm light irradiation after 3 hours using 1.0 mg photocatalyst in 20% lactic acid (pH = 1.64) (black), 0.75M ascorbic acid (pH = 2.39) (red), 20% TEOA (pH = 12.59) (green), 0.7M Na₂S and 0.5M Na₂SO₃ (pH = 13.86) (blue) sacrificial reagents aqueous solution.

Table S5. The apparent quantum yields (QEs) under monochromatic 420 nm light irradiation after 3 hours using 1 mg photocatalyst for twinned $Zn_{0.5}Cd_{0.5}S$ and $Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$ in different sacrificial reagents.

	Lactic acid	Ascorbic acid	TEOA	Na ₂ S/Na ₂ SO ₃
$Zn_{0.5}Cd_{0.5}S$	0.80 %	3.73 %	0.24 %	6.56 %
$Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$	13.26 %	19.70 %	5.31 %	16.52 %

Table S6. The turnover number (TON) and turnover frequency (TOF) for $PdS_{\sim 1.67}P_{\sim 0.33}$ in different sacrificial reagents.

	Lactic acid	Ascorbic acid	TEOA	Na ₂ S/Na ₂ SO ₃
TON	62025	114557	25399	73418
TOF	1241	2291	508	1468

Fig. S11 The rate of H₂ evolution of twinned $Zn_{0.5}Cd_{0.5}S$ photocatalysts in the 20% lactic acid (pH = 1.64) (solid square), 0.75M ascorbic acid (pH = 2.39) (solid circle), 20% TEOA (pH = 12.59) (solid up triangle), 0.7M Na₂S and 0.5M Na₂SO₃ (pH = 13.86) (solid down triangle) sacrificial reagents aqueous solution.

Table S7. The experimental data of Brunauer-Emmett-Teller (BET) and Pole diameter of twinned $Zn_{0.5}Cd_{0.5}S$ and $Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$.

	$Zn_{0.5}Cd_{0.5}S$	$Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$
BET (m ² g ⁻¹)	20.74	16.52
Pole diameter (nm)	233.89	233.89

Fig. S12. Photoluminescence spectra of twinned $Zn_{0.5}Cd_{0.5}S$ (black) and $Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$ (red) under 350 nm excitation wavelength.

Table S8. The fluorescence quantum yield (Φ_f) of twinned $Zn_{0.5}Cd_{0.5}S$ and $Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$.

	$Zn_{0.5}Cd_{0.5}S$	$Zn_{0.5}Cd_{0.5}S/PdP_{\sim 0.33}S_{\sim 1.67}$
$\varPhi_f(\%)$	5.7	0