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Supplemental Note 1: Calculations of DOS effective masses and Lorenz numbers
On the basis of the Boltzmann transport equation and relaxation time approximation in a simplified single 

parabolic band, the Seebeck coefficient and carrier concentration of a degenerate semiconductor can be 

expressed as followed equations1,2 
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where Fj(x) is the Fermi integral, F the reduced Fermi level, m* the effective mass, h the Planck 

constant, and kB the Boltzmann constant, respectively. equates 0 for the acoustic phonon 

scattering, and then m* can be calculated based on the results of  and pH at 300 K. The Lorenz 

number can be calculated according to following equation (= 0), 
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Supplemental Note 2: Calculations of L using the Klemens-Callaway theory

Considering only Umklapp and point defect phonon scattering processes, the ratio of L of the 

crystal with disorder to that without disorder, L
p, is
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where u, , h, v, and are the disorder scaling parameter, the average volume per atom, the exp

Planck constant, the average sound velocity, and the experimental disorder scattering parameter, 

respectively. The disorder scattering parameter, Γcalc, is derived from the model of Slack3 and by 

Abeles4 by assuming Γcal=ΓM +ΓS, where the scattering parameters ΓM and ΓS are due to mass and 

strain field fluctuations, respectively. The composition of a compound can be expressed as 

A1c1A2c2A3c3…Ancn, where the Ai are crystallographic sublattices in the structure and the ci are 

the relative degeneracies of the respective sites. In general there will be several different types of 

atoms that occupy each sublattice, and the kth atom of the ith sublattice has mass , radius , k
iM k

ir

and fractional occupation . The average mass and radius of atoms on the ith sublattice are k
if
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The mass fluctuation scattering parameter is then given by
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The mass fluctuation scattering parameter for the ith sublattice can be expressed as 

                                                             (8)2(1 ) ,
k

i k i
M i

k i

Mf
M

  

and the average atomic mass of the compound is    
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For two different elements on each of the ith sublattice, i.e., k = 1, 2, we have masses  and 1
iM

, fractional concentrations  and , and, using + =1 and , Eqs. 2
iM 1
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(7)–(9) become
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Impurity atoms in an ordered crystal lattice with different size and coupling forces from the lattice 

atoms, will create strain field fluctuation. Using an elastic continuum treatment, Steigmeier5 and 

Abeles4 derived a simplified expression for ΓS that depends only on atomic radii relation between 

the change in stiffness constant and the change in size due to the presence of impurity atoms. For 

two different atoms on each of the ith sublattices, the ΓS is given by 
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where , and εi is a phenomenological adjustable parameter for the ith sublattice. 1 1 2 2
i i i i ir f r f r 

The parameter εi is a function of the Grüneisen parameter  and elastic properties,4 and Ableses 

expressed εi as6 
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where δ is the Poisson ratio which for most semiconducting compounds is found between 0.15 and 

0.3. G is a ratio between the contrast in bulk modulus (ΔK/K) and that in the local bonding length 

(ΔR/R). G is materials dependent and not straightforward to calculate, and was taken as 4 for 

diamond structure. Here we taken δ = 0.25 and G = 3 for the calculations, and used two different 

 values of 1.5 and 2 which gives two different ε values of ~100 and ~150, respectively. 



The other physical parameters used for calucaltions are averaged for Bi2Se3 and Sb2Se3, such as 

sound velocity, Debye temperature, atomic volume, etc.    

Supplemental Figures

Figure S1. The backscattered electron images for Bi2-xSbxSe3 polycrystals.



Figure S2. The crystal structure of rhombohedral Bi2Se3, (a) hexagonal cell, (b) [BiSe6] octahedron within 
quintuples. The quintuple layer (~1 nm) and van der Waals gap are shown in (a).

Figure S3. The crystal structure of orthorhombic Sb2Se3. (a) Unit cell, (b) chain-like structure projected 

on ac plane. 



Figure S4. The thermoelectric transport properties of Bi2-xSbxSe3, (a) electrical conductivity, (b) Seebeck 

coefficient, (c) specific heat, (d) thermal conductivity, (e) power factor, and (f) ZT. The electrical 

properties of Sb2Se3 is unmeasurable in the ZEM-3 system. 



Figure S5. The band gaps estimated by Eg = 2emaxTmax, and also compared with optical gaps of thin 
films.7,8

Figure S6. Phonon dispersion of O-BiSbSe3, enlarged in the low energy range.

Figure S6. Phonon dispersion of R-Bi2Se3.



Figure S7. Powder XRD of Bi1.2Sb0.8(Se1-yIy)3 and BiSb(Se1-yIy)3 (y = 0-0.03).

Figure 8. The BSE images of Bi1.2Sb0.8(Se1-yIy)3 and BiSb(Se1-yIy)3 (y = 0.01, 0.02, and 0.03).
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