
Supplemental Information

S1. Feature calculations. 

 This section describes the methods used for calculating the 20 atomistic 

features given in Table 2. To account for periodic boundary conditions, feature 

extraction is performed for all atoms within a 1×1×1 computational cell at the 

center of a 3×3×3 supercell. Features 1.6, 1.7, 1.9, 1.12, and 1.13 described here 

comprise the ionic conductivity classification model with regression coefficients 

given in Table 2. For reference, the values of all features for lithium iodide and 

lithium phosphide are given in Table S3.

S1.1 Average atomic volume, AAV (Å3)

Sum the number of atoms in the unit cell Ncell and divide by the unit cell 

volume Vcell.  

  (S1)
𝐴𝐴𝑉 =

𝑁𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙

S1.2 Standard deviation in Li neighbor count, SDLC (dimensionless)

For each of the NLi lithium atoms in the unit cell, count the number of atoms 

within a distance  in any direction. This distance may include nearest and 𝑟𝑖𝑗 < 4 Å

greater distance neighbor atoms.  Take the standard deviation of this value over all 

Li atoms in the unit cell.

 (S2)

𝑆𝐷𝐿𝐶 =  

𝑁𝐿𝑖

∑
𝑖 ∈ {𝐿𝑖}

(

𝑁𝑎𝑡𝑜𝑚𝑠

∑
𝑗 = 1

1{�⃗�𝑖𝑗 < 4Å} ‒ 𝐿𝑁𝐶)2

𝑁𝐿𝑖 ‒ 1

where LNC is the average lithium neighbor count, given in S1.5. Note 1{X} is the 

indicator function, which evaluates to 1 if the argument X is true and 0 if X is false.

S1.3 Standard deviation in Li bond ionicity, SDLI (dimensionless)

Find all lithium bonds in the crystal, defined as any connection between Li 

and another atom separated by less than 4Å. For each Li-X bond i in the unit cell, 
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evaluate the Pauling electronegativity1,2 difference (“ionicity”) between Li and its 

neighbor, Ii=|ENLi-ENX|1{rLi-X≤4Å}. Take the standard deviation of these Nbonds bonds.

            (S3)

𝑆𝐷𝐿𝐼 =  

𝑁𝑏𝑜𝑛𝑑𝑠

∑
𝑖 ∈ {𝐿𝑖 ‒ 𝑋}

(𝐼𝑖 ‒ �̅�𝑖)
2

𝑁𝑏𝑜𝑛𝑑𝑠 ‒ 1

S1.4 Average Li bond ionicity, LBI (dimensionless)

Take the average electronegativity difference of all Nbonds Li-X bonds, as 

described in S1.3. 

     (S4)
𝐿𝐵𝐼 =

𝑁𝑏𝑜𝑛𝑑𝑠

∑
𝑖 ∈ {𝐿𝑖 ‒ 𝑋}

𝐼𝑖

𝑁𝑏𝑜𝑛𝑑𝑠 ‒ 1

S1.5 Average Li neighbor count, LNC (dimensionless)

Take the average of the distribution described in S1.2, i.e. take the average of 

each Li atom’s 4Å neighbor count. 

      (S5)
𝐿𝑁𝐶 =

1
𝑁𝐿𝑖

𝑁𝐿𝑖

∑
𝑖 ∈ {𝐿𝑖}

𝑁𝑎𝑡𝑜𝑚𝑠

∑
𝑗 ≠ 𝑖

1{𝑟𝑖𝑗 ≤ 4Å}

Note this is not necessarily the lithium coordination, as the cutoff of 4Å may reach 

into second nearest neighbors. This relatively large value of cutoff is chosen to 

minimize the number of cases for which this feature evaluates to zero. 

S1.6 Average Li-Li bonds per Li, LLB (dimensionless)

For each Li atom in the unit cell, count the number of Li atoms within 4Å. 

Average this value over all Li in the unit cell.

(S6)
𝐿𝐿𝐵 =  

1
𝑁𝐿𝑖

𝑁𝐿𝑖

∑
𝑖 ∈ {𝐿𝑖}

𝑁𝐿𝑖

∑
𝑗 ∈ {𝐿𝑖},𝑗 ≠ 𝑖

1{𝑟𝑖𝑗 ≤ 4Å}



S1.7 Average bond ionicity of sublattice, SBI (dimensionless)

Similar to S1.4 but for all non-Li atoms in the lattice; e.g. loop through all 

non-Li atoms (X) in the unit cell, and find all X-Y bonds, where X and Y are separated 

by at most 4Å and X is not Li but Y may be Li. Calculate the bond ionicity of all Nbonds 

of these bonds and take the average:

(S7)
𝑆𝐵𝐼 =

𝑁𝑏𝑜𝑛𝑑𝑠

∑
𝑖 ∈ {𝑋 ‒ 𝑌}

𝐼𝑖

𝑁𝑏𝑜𝑛𝑑𝑠

S1.8 Average sublattice neighbor count, SNC (dimensionless)

Similar to the Li neighbor count (S1.5) but for all non-Li atoms in the lattice. 

For all atoms in the unit cell except any Li atoms, count the number of neighboring 

atoms (including Li) within 4Å. Average this value over all non-Li atoms. 

     (S8)
𝑆𝑁𝐶 =

1
𝑁𝑎𝑡𝑜𝑚𝑠 ‒ 𝑁𝐿𝑖

𝑁𝑎𝑡𝑜𝑚𝑠 ‒ 𝑁𝐿𝑖

∑
𝑖 ∉ {𝐿𝑖}

𝑁𝑎𝑡𝑜𝑚𝑠

∑
𝑗 ≠ 𝑖

1{𝑟𝑖𝑗 ≤ 4Å}

S1.9 Anion framework coordination, AFC (dimensionless)

First, find the atom in the lattice with the highest Pauling electronegativity 

value and designate this as the lattice anion, A. Ignoring all other atoms in the lattice, 

calculate the coordination of the anions with each other. This is done with the 

following procedure: for each anion in the lattice i, find the nearest anion j at a 

distance . Then count the number of anions in the supercell within a distance rij 
𝑟𝑖𝑗0

from atom i such that . Average this over all anions in the unit cell.
𝑟𝑖𝑗0

≤ 𝑟𝑖𝑗 ≤ 𝑟𝑖𝑗0
+ 1Å

      (S9)
𝐴𝐹𝐶 =

𝑁𝐴

∑
𝑖 ∈ {𝐴}

𝑁𝐴,𝑃𝐵𝐶

∑
𝑗 ∈ {𝐴}𝑃𝐵𝐶

1{𝑟𝑖𝑗0
≤ 𝑟𝑖𝑗 ≤ 𝑟𝑖𝑗0

+ 1Å}  

𝑁𝐴



S1.10 Average shortest anion-anion separation distance, AASD (Å)

After finding the anion-anion coordination for each anion i, take the average 

distance to its nearest neighbors, NNi. Average this distance over all NA anions in the 

unit cell.

 (S10)
𝐴𝐴𝑆𝐷 =

𝑁𝐴

∑
𝑖 ∈ {𝐴}

𝑁𝑁𝑖

𝑁𝐴

S1.11 Volume per anion, VPA (Å3)

Divide the unit cell volume Vcell by the total number of anions in the cell NA.

  (S11)
𝑉𝑃𝐴 =

𝑉𝑐𝑒𝑙𝑙
𝑁𝐴

S1.12 Average shortest Li-anion separation distance, LASD (Å)

For each of the Li atoms in the cell, find the distance rij to the nearest anion A 

in the supercell. Take the average of these values over all NLi Li atoms.

(S12)
𝐿𝐴𝑆𝐷 =

𝑁𝐿𝑖

∑
𝑖 ∈ {𝐿𝑖}

𝑚𝑖𝑛𝑗 ∈ {𝐴}{𝑟𝑖𝑗}

𝑁𝐿𝑖

S1.13 Average shortest Li-Li separation distance, LLSD (Å)

For each Li atom in the unit cell, find the Euclidean distance to the nearest Li 

atom in the supercell. Take the average value of this distribution over all Li atoms. 

      (S13)
𝐿𝐿𝑆𝐷 =

𝑁𝐿𝑖

∑
𝑖 ∈ {𝐿𝑖}

𝑚𝑖𝑛𝑗 ∈ {𝐿𝑖},𝑗 ≠ 𝑖{𝑟𝑖𝑗}

𝑁𝐿𝑖

S1.14 Average electronegativity of sublattice, ENS (dimensionless)

Take the average of the electronegativity of all atoms {EN} in the unit cell 

excluding Li.  



        (S14)
𝐸𝑁𝑆 =

𝑁𝑎𝑡𝑜𝑚𝑠 ‒ 𝑁𝐿𝑖

∑
𝑖 ∉ {𝐿𝑖}

𝐸𝑁𝑖

𝑁𝑎𝑡𝑜𝑚𝑠 ‒ 𝑁𝐿𝑖

S1.15 Packing fraction of full crystal, PF (dimensionless)

For each atom, first choose an atomic radius based on the bonding 

environment. If the bond ionicity of the atom i, (END)i if greater than 2, choose the 

ionic radius in Table S1; if the bond ionicity is less than 2, choose the covalent 

radius. Once all effective radii ri
eff have been assigned, the packing fraction is 

calculated using a quadrature method. We populate the unit cell with points chosen 

uniformly at random, and then calculate the ratio of points within the effective 

atomic radii of any atom to the total number of points. This ratio is the packing 

fraction. The set of points rES} within the effective radius of any atom is the set of {

points for which . We use a quadrature approach to account 

𝑁𝑎𝑡𝑜𝑚𝑠,𝑃𝐵𝐶

∏
𝑗 = 1

1{𝑟𝑖𝑗 > 𝑟𝑒𝑓𝑓
𝑗 } = 0

for possible overlap between atoms.

(S15)
𝑃𝐹 =  

𝑁𝑝𝑜𝑖𝑛𝑡𝑠

∑
𝑖 = 1

[1 ‒

𝑁𝑎𝑡𝑜𝑚𝑠,𝑃𝐵𝐶

∏
𝑗 = 1

1{𝑟𝑖𝑗 > 𝑟𝑒𝑓𝑓
𝑗 }]

𝑁𝑝𝑜𝑖𝑛𝑡𝑠

Randomly located points are added to the unit cell until convergence is 

reached. The packing fraction is evaluated after every addition of 1,000 new points; 

convergence is reached when the packing fraction changes by less than 1% between 

successive evaluations.

S1.16 Packing fraction of sublattice, SPF (dimensionless)

Similar to S1.16, but first remove all Li atoms from the unit cell. 



(S16)
𝑃𝐹 =  

𝑁𝑝𝑜𝑖𝑛𝑡𝑠

∑
𝑖 = 1

[1 ‒

𝑁𝑎𝑡𝑜𝑚𝑠,𝑃𝐵𝐶 ‒ 𝑁𝐿𝑖,𝑃𝐵𝐶

∏
𝑗 ∉ {𝐿𝑖}

1{𝑟𝑖𝑗 > 𝑟𝑒𝑓𝑓
𝑗 }]

𝑁𝑝𝑜𝑖𝑛𝑡𝑠

S1.17 Average straight-line path width, SLPW (Å)

This feature finds the maximum radius of the cylinder that connects each 

lithium with its nearest lithium neighbor. For each Li atom i, first find the nearest Li 

atom within the supercell, as performed in S1.14. Draw a straight line connecting 

the two Li atoms. Loop through all other atoms in the supercell and project them 

onto the connecting line. If atom j does not project onto the line segment between 

the two Li atoms, discard atom j. Of the remaining atoms, evaluate the distance 

between the connecting line and the edge of the hard sphere defined by that atom 

(using the effective radius of each atom, determined as described in S1.16). If an 

atom is blocking the pathway completely, assign the distance to zero. Find the atom 

that gives the smallest distance. This distance, which represents the radius of the 

largest cylinder that connects Li atom i and its nearest neighbor j, makes up the 

contribution to the SLPW feature for Li atom i. To calculate the SLPW feature value, 

evaluate this distance for each Li atom and take the average. A schematic of this 

calculation is shown in Figure S2.

Note that this metric does not necessarily reflect the “bottleneck” width for 

conduction, as the minimum-energy diffusion pathway for lithium need not follow a 

straight line. This feature may be interpreted, however, as a crude indicator for the 

energy change and/or scattering required for Li to conduct.  

S1.18 Average straight-line path electronegativity, SLPE (dimensionless)

After finding the atom responsible for the minimum straight-line path width 

for each Li in the unit cell using the procedure described in S1.18, take the 

electronegativity of this atom. Repeat this process for all Li atoms in the cell and 

take the average. 



S1.19 Ratio of average Li bond ionicity to average sublattice bond ionicity, RBI 

(dimensionless) 

Take the ratio of the average Li bond ionicity calculated in S1.4 and the 

average sublattice bond ionicity calculated in S1.7: RBI = LBI/SBI.

S1.20 Ratio of average Li neighbor count to average sublattice neighbor count, RNC 

(dimensionless)

Take the ratio of the average Li neighbor count calculated in S1.5 and the 

average sublattice neighbor count calculated in S1.8: RNC = LNC/SNC.



S2. Training structures with fractional coordinates

Of the 40 training structures, 23 are given in the ICSD database with 

fractional atomic occupancies. In these cases, the exact equilibrium positions of 

some atoms in the unit cell have not been resolved due to high disorder or, in the 

case of highly mobile atoms, are ill-defined.  Our feature extraction algorithm maps a 

structure to a vector based on the atomistic positions, and thus structures with 

fractional occupancies require some additional definition. In these cases, we employ 

a probabilistic sampling approach in which we evaluate the expectation value of the 

feature vector over the distribution of likely structures: . The 〈𝑋〉 = ∫𝑋𝑃(𝑋)𝑑𝑋

probability function P(X) is the probability of seeing a feature vector X. Since the 

feature extraction process f maps a structure x to a unique feature vector X, , 𝑓:𝑥→𝑋

we instead evaluate the expectation value over structures:

(S18)〈𝑋〉 = ∫𝑓(𝑥)𝑃(𝑥)𝑑𝑥

In this case, the function P(x) is the probability of observing a particular 

structure with some sites occupied and others not. Provided in the structure files 

from the ICSD are the individual site occupation probabilities Pocc(xi) for all sites i; 

we take the probability of seeing a particular occupation to be a Bernoulli random 

variable: , where ni=1 if site i is occupied and ni=0 𝑃(𝑥𝑖) = 𝑃𝑜𝑐𝑐(𝑥𝑖)
𝑛𝑖[1 ‒ 𝑃𝑜𝑐𝑐(𝑥𝑖)]

(1 ‒ 𝑛𝑖)

otherwise. The probability of seeing a particular combination of occupied and 

unoccupied sites in a crystal is not generally equal to the product of the individual 

site occupation probabilities of the occupied sites, as these occupations are likely to 

be correlated; i.e. the joint occupation probability . To account 
𝑃(𝑥) = 𝑃({𝑥𝑖}) ≠ ∏

𝑖

𝑃(𝑥𝑖)

for this correlation, we add a hard sphere term to ensure that sites separated by less 

than a cutoff radius rc are not simultaneously occupied. Beyond this radius, we 

assume electronic screening negates correlation. We define the structural 

realization probability thus:

(S19)
𝑃({𝑥𝑖}) = ∏

𝑖
∏
𝑗 ≠ 𝑖

 𝑃𝑜𝑐𝑐(𝑥𝑖)
𝑛𝑖[1 ‒ 𝑃𝑜𝑐𝑐(𝑥𝑖)]

(1 ‒ 𝑛𝑖)1{𝑟𝑖𝑗 ≥ 𝑟𝑐}



This ensures that all mobile atoms are always separated by some minimum 

distance. To evaluate the integral S18, we use a Metropolis Monte Carlo-inspired 

scheme to evolve the structure and sample the features in accordance with the 

distribution P({xi}). An initial structure is drawn randomly from the site occupation 

probabilities. If any two fractionally occupied atoms are separated by less than rc, 

the structure is discarded. We initially set rc = 2 Å for all structures. However, some 

structures do not have any possible realizations in which all fractionally occupied 

atoms are separated by more than 2 Å. In this case, if an acceptable structure is not 

drawn after 1,000 attempts, rc is decremented by 0.1 Å for the next 1,000 attempts, 

and so on, until a feasible structure is realized.

Once a starting structure is chosen, in each Monte Carlo step we generate 

trial structures by choosing two atoms and/or vacancies uniformly at random and 

swapping them. If this swap creates a permissible new structure, we accept the trial 

structure with probability Paccept = P({xi}new)/P({xi}old). This is accomplished using a 

Metropolis type algorithm, i.e. accept with probability one if Paccept evaluates to 

greater than one. See Figure S3 for a flowchart detailing this structure evolution 

process. At each step, the features are extracted and added to the running average. 

This continues until convergence is reached. Convergence is reached when the 

running mean of all features change by less than 1% for 100 consecutive steps. All 

training set structures with fractional occupancies converge within 1,000 steps 

total. A plot of the convergence thresholds for each feature relative to the standard 

deviation of feature values across the training set is given in Fig. S4.

There are several classes of swaps that create invalid or redundant 

structures. For example, swapping two interchangeable atoms in an alloyed 

material, e.g. Ge and V in Li3.5Ge0.5V0.5O4, creates a valid new structure. Swapping the 

locations of Li and Ge, however, creates an invalid structure, as there are no sites 

that either Li or Ge can occupy. For this invalid structure P({x})=0, so it makes no 

contribution to the integral S18 and we therefore do not bother to extract features.

Similarly, some swaps give rise to completely unchanged structures, e.g. 

swapping two vacancies, or two occupied Li sites in Li3.5Ge0.5V0.5O4. We take the 



atoms and vacancies to be indistinguishable particles and thus reject trial structures 

that result in unchanged structures and do not extract their features. 



S3. Motivation for logistic regression

The choice to classify based on ionic conductivity rather than predict a value 

of ionic conductivity is due to the relatively small size of the training set and as a 

precaution against overfitting to experimental noise, as ionic conductivity 

measurements on the same material can often vary by an order of magnitude or 

more due to sample and microstructure variability. Logistic regression is a robust 

low-variance (low flexibility) classification method, well suited to small training 

sets, which produces an easy-to-interpret classification function. 

In our analysis, we studied the performance of models built with several 

other regression and classification methods, including ordinary least squares 

regression, robust regression (with several different cost functions), locally-

weighted least squares, support vector machine classification (with several different 

kernels), multi-class (>2) classification, and neural networks. None of these models 

displayed strong predictive power as logistic regression in leave-one-out trials. 

Compared to logistic regression, these methods are relatively high variance, which 

can result in high cross-validation errors when the data set is small. Logistic 

regression performs well on this data, but its utility is limited by the simple good-or-

bad-conductor nature of classification. As the data set grows, more powerful higher 

variance methods that can predict a numerical value of ionic conductivity (i.e. 

regression) may become appropriate.

Additionally, we avoid nonparametric methods like support vector machines 

because these do not provide an easily interpretable model. Parametric models, 

although generally less robust, can provide scientific intuition on which crystal 

features are most important to superionic conductor design. This is beneficial in any 

case where the underlying dynamics are not well understood. One particular 

nonparametric method that performs well on this dataset is locally-weighted 

regression. However, in addition to not providing an interpretable model, locally-

weighted regression cannot extrapolate effectively beyond the region of training 

data, thus making it ineffective for a large proportion of the screened Materials 

Project data.



We seek to reduce the data dimensionality by throwing out individual 

features, as opposed to performing dimension reduction through regularization or a 

basis rotation algorithm, e.g. partial least squares3 because of the small dataset and 

the physical nature of the features. By throwing out individual features we can gain 

improved scientific understanding on which features are important and which are 

unimportant to improve ionic conductivity.  Additionally, regularized models with 

many parameters generally have lower predictive power than unregularized models 

with a smaller number of features. The small dataset enables the usage of a 

relatively expensive combinatorial approach to model selection (all feature 

combinations considered) rather than regularization or forward/backward 

propagation. With a larger dataset, dimension reduction would likely need to be 

done with propagation or regularization.



S4. Classification threshold effects

The CVMR for both the true models and the randomized models (red curve in 

Fig. 5) approach a minimum at either end of the x-axis, when the number of training 

examples in one class goes to zero, while the difference between the X-randomized 

CVMR and the true CVMR peaks near the 50/50 class split. A more even split in 

classes in the training data is desirable, as this gives the model the optimum number 

of examples to learn what each class looks like. This is likely to give us the best 

performance on unseen data. Thus, in choosing our ionic conductivity threshold 

value, we must weigh three competing factors: (a) we want the lowest CVMR value, 

which tends to occur at the extremes in class division, (b) we want the best 

performance on unseen data, which occurs when the difference between the true 

CVMR and random CVMR is maximized (which occurs near the 50/50 split in Fig. 5), 

and (c) we need a physically relevant cutoff to make our model scientifically useful. 

We see in Fig. S5 that the 10-4 S/cm cutoff, originally chosen to satisfy criterion (c), 

performs well on criteria (a) and (b); the CVMR is low and the misclassification rate 

is approximately four times smaller than the random data case. 

The percentage of the predicted superionics that are actually false positives 

mirrors the CVMR trend for the true models; this is represented by the blue curves 

in Fig. S5. Here the false positive rate (FPR) is defined as the probability that a 

material in the training set is non-superionic, given that it is predicted by the model 

as superionic:

FPR = P(observed non-superionic | predicted superionic)                (S20)

  Under randomized conditions, the probability of a material in the training 

set holding the non-superionic label and the probability of that same material being 

classified (uniformly at random) as superionic are independent; thus, FPR should 

simply equal the proportion of the training set that is non-superionic. The X-

randomization process confirms this in Fig. S5 by tracing out the curve FPR=1-(% 

training set in positive class)=(% training set in negative class). 

Predicting the exact misclassification rate of the screened materials is 

difficult, as it depends on the unknown underlying distribution of ionic 

conductivities across this set. Given the historical difficulty with which new 



superionics are discovered, it is unlikely that 27.5% of the universe of Li-containing 

materials is superionic, as is the case in the training set. However if we assume this 

optimistic distribution does hold and the training data is a representative sample of 

the MP structures, and all MP structures are within the domain of applicability of the 

model, we would expect our model’s superionic predictions would be correct 82% 

of the time. If the unknown true distribution of superionic materials is 1% for 

example, an investigator would need to test 100 materials before identifying a 

superionic, while our model may cut this down fourfold to 100/4 = 25. In the 

absence of knowledge on the underlying ionic conductivity distribution, one cannot 

make this claim with certainty. 



S5. Computational investigation of promising electrolyte Li5B7S13

We perform theoretical studies of the ionic conductivity of Li5B7S13
4, one of 

the promising new electrolyte candidates from Table 3. This provides additional 

validation of the model beyond the correct identification of superionic materials 

that are not included in the training set, discussed in Section 4.5. Our DFT studies on 

the structure Li5B7S13 suggest that RT superionic lithium conduction is likely. We 

perform DFT molecular dynamics (MD) simulations at high temperature to speed up 

diffusion; MD at 900 K shows the lithium diffusion in Li5B7S13 to be liquid-like while 

the sublattice remains stationary. At this temperature, we find ionic conductivity 

σ900 K = 3 S/cm. Extrapolating down to room temperature, we estimate an ionic 

conductivity in the range of σRT = 2.6  10-2 to 1.6 S/cm depending on the diffusion ×

mechanism. The details of this calculation are discussed below.

For the DFT calculations we use the Vienna Ab Initio Simulation Package5 

(VASP) with the generalized gradient approximation (GGA) of Perdew-Burke-

Ernzerhof6 (PBE) and the projector augmented wave7 (PAW) method. We use the 

following pseudopotentials: PAW_PBE Li_sv, PAW_PBE B, and PAW_PBE S. We 

employ a plane wave cutoff energy of 499 eV, a 2fs time step, and a gamma-point 

only k-mesh. 

For the MD simulations, we begin with a single unit cell (100 atoms) and 

remove 1 of the 20 Li atoms for a Li vacancy concentration of 5%. We measure the 

diffusion coefficient from the mean-squared displacement of lithium to be 

, while no other atom species are observed diffusing. We can calculate 𝐷 = 1.31 Å2/𝑝𝑠

the energy barrier for lithium motion Ea using the following general diffusion 

formula:

(S21)
𝐸𝑎 =‒ 𝑘𝐵𝑇𝑙𝑛(

𝐷

𝑓𝑎2𝜈0𝑝𝑜𝑐𝑐𝑧𝑗
)

where kB is Boltzmann’s constant, T is absolute temperature, f is the diffusion 

correlation coefficient,  is the average hopping distance,  is the 𝑎 = 3.673 Å 𝜈0 = 10 𝑝𝑠 ‒ 1

Li attempt frequency, and j = 1/6 for 3-dimensional diffusion. We take f = 1. The 

product poccz represents the fraction of Li atoms that are available to diffuse, and the 



terms depend on the diffusion mechanism. If diffusion is vacancy driven, then pocc is 

simply the vacancy concentration , and  is the average number of Li 𝑥0
𝑣 = 0.05 𝑧 = 2.7

atoms surrounding a Li vacancy (feature LLB); thus . If the mechanism is 𝑝𝑜𝑐𝑐𝑧 = 0.135

interstitial, all atoms can diffuse and . We calculate the attempt frequency  𝑝𝑜𝑐𝑐𝑧 = 1 𝜈0

from the Li velocity autocorrelation function.

Given the speed of conduction, we cannot infer the mechanism from the MD 

results and we therefore calculate a range of possible diffusion barriers. For the 

purely vacancy driven case, we find ; for the interstitial case we find 𝐸𝑎 = 0.065 𝑒𝑉

. Utilizing the Einstein relationship, we relate the diffusion barrier to the 𝐸𝑎 = 0.22 𝑒𝑉

Li conductivity as a function of temperature:

   (S22)
𝜎(𝑇) =

𝐷𝑛𝑞2

𝑘𝐵𝑇
=

(𝑓𝑎2𝜈0𝑝𝑜𝑐𝑐𝑧𝑗)𝑛𝑞2

𝑘𝐵𝑇
𝑒

‒ 𝐸𝑎/𝑘𝐵𝑇

where n is the lithium concentration and q is the fundamental charge. At 900 K, 

regardless of the mechanism, we calculate a liquid-like conductivity of . 𝜎900 𝐾 = 3 𝑆/𝑐𝑚

At RT, we estimate the ionic conductivity to fall between the range of 

 for the interstitial mechanism case, and  for the 𝜎293 𝐾 = 0.026 𝑆/𝑐𝑚 𝜎293 𝐾 = 1.6 𝑆/𝑐𝑚

vacancy case. We believe that the interstitial mechanism is more likely, so we expect 

the RT ionic conductivity to be closer to the value of 0.026 S/cm. Regardless, we 

note that the RT ionic conductivity appears to be greater than the superionic 

threshold of 0.1 mS/cm; this result suggests that our model has correctly identified 

Li5B7S13 as a promising new electrolyte material.



Table S1: References for atomic mass8, Pauling electronegativity1,2, covalent 
radius9, ionic radius of most common oxidation state10, materials cost per kg11, and 
ranking of abundance in Earth’s crust12. For some elements, this data is unavailable. 
The sublattice bond ionicity (SBI) feature in the superionic predictor uses the 
ionicity difference between atoms, so structures including elements without 
electronegativity values (He, Ne, Ar, Pm, Eu, Tb, Yb, Rn) are eliminated from the 
screening. Costs are not calculated for materials including elements without reliable 
cost values (Ar, Kr, Tc, Pm, Po, At, Rn, Fr, Ra, Ac, Th) or earth abundance indeces (He, 
Ne, Ar, Kr, Tc, Xe, Pm, Po, At, Rn, Fr, Ra, Ac, Pa), but these materials are not 
eliminated from the screening. 

Symbol Z Atomic mass

Pauling 
electro-

negativity
Covalent 

radius

Ionic
radiu

s
Cost 

per kg

Earth 
abundance 

rank
H 1 1.008 2.20 0.31 0.31 3 11

He 2 4.003 − 0.28 0.28 52 −
Li 3 6.94 0.98 1.28 0.9 270 34
Be 4 9.012 1.57 0.96 0.59 7480 50
B 5 10.81 2.04 0.84 0.41 11140 38
C 6 12.011 2.55 0.76 0.3 24 10
N 7 14.007 3.04 0.71 1.32 4 32
O 8 15.999 3.44 0.66 1.26 3 1
F 9 18.998 3.98 0.57 1.19 1900 14

Ne 10 20.180 − 0.58 0.58 330 −
Na 11 22.990 0.93 1.66 1.16 250 7
Mg 12 24.305 1.31 1.41 0.86 5.8 6
Al 13 26.982 1.61 1.21 0.68 1.31 3
Si 14 28.085 1.90 1.11 0.54 2.37 2
P 15 30.974 2.19 1.07 0.52 300 13
S 16 32.059 2.58 1.05 1.7 500 15
Cl 17 35.45 3.16 1.02 1.67 1.5 19
Ar 18 39.948 − 1.06 1.06 − −
K 19 39.098 0.82 2.03 1.52 1000 8

Ca 20 40.078 1.00 1.76 1.14 200 5
Sc 21 44.956 1.36 1.70 0.89 14000 31
Ti 22 47.867 1.54 1.60 0.85 66.22 9
V 23 50.942 1.63 1.53 0.78 14.33 18
Cr 24 51.996 1.66 1.39 0.74 9.59 20

Mn 25 54.938 1.55 1.39 0.75 1.5 12
Fe 26 55.845 1.83 1.32 0.77 72 4
Co 27 58.933 1.88 1.26 0.76 46 29
Ni 28 58.693 1.91 1.24 0.72 40 22
Cu 29 63.546 1.90 1.32 0.82 7 24



Zn 30 65.38 1.65 1.22 0.88 3.5 23
Ga 31 69.723 1.81 1.22 0.76 525 33
Ge 32 72.63 2.01 1.20 0.77 940 54
As 33 74.9216 2.18 1.19 0.66 1.433 48
Se 34 78.96 2.55 1.20 1.84 85 67
Br 35 79.904 2.96 1.20 1.82 50 45
Kr 36 83.798 3.00 1.16 1.16 − −
Rb 37 85.468 0.82 2.20 1.66 12000 25
Sr 38 87.62 0.95 1.95 1.32 1000 16
Y 39 88.906 1.22 1.90 1.04 45 30
Zr 40 91.224 1.33 1.75 0.86 1570 21
Nb 41 92.906 1.60 1.64 0.82 180 35
Mo 42 95.96 2.16 1.54 0.78 30 57
Tc 43 98 1.90 1.47 0.74 − −
Ru 44 101.07 2.20 1.46 0.76 14000 75
Rh 45 102.906 2.28 1.42 0.75 80000 76
Pd 46 106.42 2.20 1.39 0.88 58330 69
Ag 47 107.868 1.93 1.45 1.09 1022 65
Cd 48 112.411 1.69 1.44 1.09 4.19 64
In 49 114.818 1.78 1.42 0.94 590 63
Sn 50 118.71 1.96 1.39 0.83 12 47
Sb 51 121.76 2.05 1.39 0.82 6 62
Te 52 127.6 2.10 1.38 2.07 240 74
I 53 126.904 2.66 1.39 2.06 83 60

Xe 54 131.293 2.60 1.40 1.40 1200 −
Cs 55 132.905 0.79 2.44 1.81 11000 49
Ba 56 137.327 0.89 2.15 1.49 100 17
La 57 138.905 1.10 2.07 1.17 2 27
Ce 58 140.116 1.12 2.04 1.08 2 26
Pr 59 140.908 1.13 2.03 1.06 25 37
Nd 60 144.242 1.14 2.01 1.12 25 28
Pm 61 145 − 1.99 1.11 − −
Sm 62 150.36 1.17 1.98 1.10 3 40
Eu 63 151.964 − 1.98 1.20 300 51
Gd 64 157.25 1.20 1.96 1.08 19.5 42
Tb 65 158.925 − 1.94 0.98 600 58
Dy 66 162.5 1.22 1.92 1.13 70 39
Ho 67 164.930 1.23 1.92 1.04 8600 55
Er 68 167.259 1.24 1.89 1.03 5400 44
Tm 69 168.934 1.25 1.90 1.10 70000 61
Yb 70 173.054 − 1.87 1.08 14000 46
Lu 71 174.967 1.27 1.87 1 2400 78



Hf 72 178.49 1.30 1.75 0.85 1200 43
Ta 73 180.948 1.50 1.70 0.82 150 53
W 74 183.84 2.36 1.62 0.77 24 56
Re 75 186.207 1.90 1.51 0.71 5000 72
Os 76 190.23 2.20 1.44 0.71 77000 73
Ir 77 192.217 2.20 1.41 0.77 42000 77
Pt 78 195.084 2.28 1.36 0.81 54000 70
Au 79 196.967 2.54 1.36 1.07 53000 71
Hg 80 200.592 2.00 1.32 1.24 17.4 66
Tl 81 204.38 1.62 1.45 1.33 480 59
Pb 82 207.2 2.33 1.46 1.12 2.75 36
Bi 83 208.980 2.02 1.48 1.04 18.7 68
Po 84 209 2.00 1.40 0.94 − −
At 85 210 2.20 1.50 0.76 − −
Rn 86 222 − 1.50 1.5 − −
Fr 87 223 0.70 2.60 1.94 − −
Ra 88 226 0.90 2.21 1.62 − −
Ac 89 227 1.10 2.15 1.26 − −
Th 90 232.038 1.30 2.06 1.08 − 41
Pa 91 231.036 1.50 2.00 1.04 280000 −
U 92 238.029 1.38 1.96 0.99 165 52



Table S2: Feature values for select training structures. 

Feature 
index

Feature 
name LiI Li3P

1 AAV 27.35 Å3 14.63 Å3

2 SDLC 0.0 1.55
3 SDLI 0.0 0.54
4 LBI 1.68 0.48
5 LNC 6.0 15
6 LLB 0.0 11.33
7 SBI 1.68 1.21
8 SNC 6.0 11
9 AFC 12.0 12
10 AASD 4.26 Å 4.36 Å
11 VPA 54.70 Å3 58.51 Å3

12 LASD 3.02 Å 2.50 Å
13 LLSD 4.26 Å 2.59 Å
14 ENS 2.66 2.19
15 PF 0.37 0.54
16 SPF 0.21 0.09
17 SLPW 0.74 Å 1.09 Å
18 SLPE 2.66 0.98
19 RBI 1.0 0.39
20 RNC 1.0 1.36



Table S3: Screening results with looser constraints. A list of the results of the 
Materials Project screening with looser screening constraints is given with all 
material specifications, ranked in the table by overall performance across all 
specifications. PLR is the superionic probability; d, ε, and A are confidence metrics for 
this prediction; Egap is the DFT computed band gap;  is the upper bound oxidation �̃�𝑜𝑥

potential; the “cost per area” column gives approximate materials cost per m2 per 
10 μm thickness; Ehull is the energy above the convex hull; IA is the earth abundance 
index; to understand model performance, the final column provides references to 
studies on the ionic conductivity of these or similar materials. The screening criteria 
employed to generate this list are: PLR ≥ 0.5, Egap ≥ 0.5 eV;  ≥ 3 V; Ehull ≤ 0.1 �̃�𝑜𝑥

eV/atom; T = 0 (no transition metals present). Materials already listed in Table 3 
have been removed. *The training set includes these materials or structurally 
similar derivatives as superionic examples and thus these materials should not be 
considered successful model generalizations (see Table 1 in main text for data 
references). †These materials are reported poor conductors, i.e. they are confirmed 
false positive predictions. ‡These materials are reported fast conductors, i.e. they 
are correct model predictions. #These materials are low confidence predictions 
given d > 2. Note that several of these materials have more than one anion type, 
making the model prediction susceptible to the mixed anion effect; see Section 4.3 in 
main text.

MPID
Chemical 
formula PLR d ε A

Egap 
(eV)  (V)�̃�𝑜𝑥

Cost per 
area, 10 
μm thick 
(USD/m2)

Ehull 
(eV/atom) IA

Related 
study

mp-768229 Li2BiS3 0.869 0.986 0.031 1 0.888 3.195 7.30 0.068 68 −

mp-753429 Li4Bi2S7 0.978 1.579 0.009 1 1.093 3.312 7.40 0.058 68 −

mp-696123 Li10Sn(PS6)2 0.793 0.79 0.037 1 2.164 3.151 7.60 0.023 47 *

mp-4495 KLiTe 0.982 1.742 0.008 1 2.413 3.24 13 0 74 −

mp-985583 Li3PS4 0.622 0.775 0.033 1 2.951 3.376 7.90 0 34 *

mp-9703 K2LiGaAs2 0.97 1.545 0.013 1 0.755 3.52 13 0 48 −

mp-505431 K2LiInAs2 0.978 1.725 0.010 1 0.619 3.428 15 0 63 −

mp-695365# LiAl3Si9(N7O)2 0.84 3.157 0.136 0 3.874 44.999 0.19 0.046 34 −

mp-35205 LiErSe2 0.645 1.46 0.051 1 1.605 6.71 170 0.017 67 −

mp-30249† Li4GeS4 0.781 0.802 0.040 1 2.483 3.058 14 0 54 [13]

mp-30959 LiHS 0.813 0.898 0.035 1 3.547 3.125 6.20 0 34 −

mp-37747 LiHS 0.801 0.89 0.036 1 3.496 3.122 6.20 0.001 34 −

mp-867656# LiH2N3O 1.000 3.603 0.000 0 3.651 5.8 0.49 0.062 34 −

mp-8756 KLiSe 0.886 1.44 0.034 1 2.525 3.658 11 0 67 −

mp-864755# LiAcTe2 0.997 3.014 0.002 0 0.557 4.855 − 0 − −



mp-29008‡ Li6MgBr8 0.88 1.35 0.027 1 4.764 3.856 2.10 0.02 45 [14]

mp-14591 LiSbS2 0.759 1.15 0.041 1 1.184 3.972 6.40 0.004 62 [15]

mp-721236 Li10Sn(PS6)2 0.678 0.798 0.039 1 2.443 3.181 7.50 0.011 47 *

mp-690708# KLiPH2O4F 1.000 4.521 0.000 0 4.904 23.93 12 0.039 34 −

mp-555874 LiAsS2 0.843 1.216 0.033 1 1.066 3.763 7 0 48 [16]

mp-769129# Li3SbN3(O3F)3 0.966 2.258 0.015 0 3.338 10.583 7.40 0.096 62 −

mp-841†# Li2O2 0.948 2.918 0.029 0 1.974 3.3 1.90 0 34 [17]

mp-28592 Li7Br3O2 0.572 1.719 0.077 1 4.448 3.076 2.40 0.028 45 −

mp-9250 RbLiSe 0.77 1.625 0.059 1 2.309 3.562 210 0 67 −

mp-33526 LiBiS2 0.929 1.398 0.021 1 0.811 4.231 7.20 0 68 −

mp-720554# LiPH4NO3F 1.000 3.971 0.000 0 5.104 20.554 7.80 0.014 34 −

mp-36791 LiNdS2 0.887 1.38 0.030 1 1.857 8.422 6.90 0.019 34 −

mp-1002069# NaLiICl 0.85 3.392 0.073 0 4.187 6.435 2.90 0.083 60 −

mp-995393# LiS4 0.997 2.504 0.002 0 2.159 3.741 1.00 0 34 −

mp-28603 NaLiSe 0.505 1.154 0.057 1 2.438 3.517 4.00 0 67 −

mp-1001069 Li48P16S61 0.705 0.765 0.035 1 2.297 3.254 7.60 0.017 34 −

mp-6450 K2LiAlP2 0.962 1.42 0.015 1 1.885 3.882 12 0 34 −

mp-696138 Li10Ge(PS6)2 0.68 0.776 0.039 1 2.476 3.201 10.00 0.019 54 *

mp-33667 LiDyS2 0.871 1.269 0.030 1 1.974 8.713 9.10 0.006 39 −

mp-29463 LiBeN 0.598 0.908 0.054 1 2.686 3.014 45 0 50 −

mp-985585‡ Li3ClO 0.565 1.777 0.085 1 4.677 3.439 1.60 0.022 34 [18]

mp-644419 LiHS 0.804 0.893 0.036 1 3.525 3.123 6.20 0.001 34 −

mp-696129 Li10Si(PS6)2 0.788 0.749 0.036 1 2.383 3.283 7.80 0.011 34 *

mp-29009† Li2MgBr4 0.786 1.258 0.038 1 4.527 5.37 1.90 0.015 45 [19]

mp-644271 LiHS 0.823 0.917 0.034 1 3.498 3.124 6.20 0 34 −

mp-558731 Li2TeS3 0.77 1.138 0.038 1 1.457 3.037 11 0 74 [16]

mp-559971# LiS2N(O2F)2 1.000 4.113 0.000 0 5.9 17.609 12 0.093 34 −

mp-556562# LiAsH6(OF2)3 1.000 3.594 0.000 0 3.784 33.978 21 0.015 48 −

mp-641703 Li7P3S11 0.779 0.886 0.033 1 2.487 3.529 8.20 0.02 34 *

mp-9722 Na2LiGaAs2 0.937 1.361 0.022 1 0.684 3.37 6.50 0 48 −

mp-777963 Li3SbH18S4O9 0.661 1.137 0.047 1 2.454 14.658 2.70 0.087 62 −



mp-10618 LiInSe2 0.952 1.464 0.016 1 0.838 3.199 16 0.082 67 −

mp-35591 LiErS2 0.827 1.238 0.035 1 1.989 8.73 190 0.008 44 −

mp-23259† LiBr 0.949 1.651 0.015 1 5.091 3.096 2.30 0.025 45 [20]

mp-684082 LiSb(PO3)4 0.507 1.103 0.065 1 4.004 44.831 2.30 0.047 62 −

mp-695635# Li3Al3P3H2O14F 1.000 3.353 0.000 0 5.771 24.935 4.70 0.01 34 −

mp-767137 Li3Sb17S27 0.601 1.272 0.093 1 0.508 11.426 6.50 0.011 62 −

mp-5614 Li3BS3 0.901 1.206 0.026 1 3.050 3.092 22 0 38 [21]

mp-9719 Na2LiAlP2 0.956 1.382 0.017 1 1.885 3.852 4.60 0 34 −

mp-720509 Li10Si(PS6)2 0.687 0.762 0.039 1 2.564 3.311 7.80 0 34 *

mp-696128 Li10Ge(PS6)2 0.79 0.753 0.036 1 2.214 3.173 10 0.03 54 *



Table S4: Screening results for stable superionics. A list of the results of the Materials 
Project screening based on superionic probability and stability only is given with all 
material specifications. All metrics are the same as in Table S3 with the addition of 
T, a Boolean that indicates if a transition metal is present in the structure (T = 1) or 
not (T = 0). The screening criteria employed to generate this list are: PLR ≥ 0.95, d ≤ 
1.5; energy above hull = 0 eV/atom. Note most materials have small or zero band 
gaps, low oxidative decomposition voltages, and transition metals present, 
rendering them poorly suited for electrolyte applications. None of these materials 
are included in our training set, nor do any have reported ionic conductivity values 
to our knowledge. 

MPID
Chemical 
formula PLR d ε A

Egap 
(eV)  (V)�̃�𝑜𝑥

Cost per 
area, 10 
μm thick 
(USD/m2) T IA

mp-29720 Li21Si5 0.984 1.283 0.006 1 0 0.275 1.70 0 34 

mp-569115 Li2ZnGe 0.978 1.426 0.009 1 0 0.667 18 1 54 

mp-21471 LiFeAs 0.981 1.367 0.007 1 0 1.329 2.3 1 48 

mp-14209 LiYGe 0.961 1.47 0.016 1 0 2.2 20 1 54 

mp-8132 Li(TiSe2)3 0.979 1.357 0.007 1 0 11.606 3.40 1 67 

mp-6450 K2LiAlP2 0.962 1.42 0.015 1 1.885 3.882 12 0 34 

mp-8864 Li(Co3P2)2 0.975 1.499 0.01 0 0 7.111 7.40 1 34 

mp-1777 Li15Ge4 0.978 1.299 0.008 1 0 0.413 16 0 54 

mp-8331 Li12Mg3Si4 0.994 1.322 0.003 1 0 0.365 1.30 0 34 

mp-27454 BaLi2Si 0.989 1.406 0.005 1 0 0.545 2.90 0 34 

mp-8406 Li3NdAs2 0.961 1.253 0.014 1 0.036 1.99 1.40 0 48 

mp-530480 Li19(FeAs)20 0.978 1.346 0.008 1 0.001 1.351 2.20 1 48 

mp-11489 Li3Pd 0.966 1.446 0.014 1 0 0.415 1700 1 69 

mp-9562 LiBeAs 0.977 1.307 0.008 1 1.008 1.461 26.00 0 50 

mp-733455 Li3H6Rh 0.995 1.468 0.002 1 2.425 1.647 1600 1 76 

mp-865874 Li2AgHg 0.982 1.364 0.007 1 0 0.595 28 1 66 

mp-20698 LiCoAs 0.98 1.376 0.007 1 0 1.491 1.80 1 48 

mp-20049 LiFeP 0.973 1.269 0.009 1 0 1.973 6.30 1 34 

mp-19755 Li(TiS2)3 0.96 1.201 0.012 1 0 17.422 8.20 1 34 

mp-15820 LiHoGe 0.958 1.461 0.017 1 0 2.143 400 0 55 

mp-865965 Li2CaSi 0.981 1.376 0.008 1 0.425 0.643 2.80 0 34 

mp-865666 Li2TlAg 0.987 1.447 0.005 1 0 0.453 48 1 65 



mp-14208 LiYSi 0.965 1.49 0.014 1 0 1.839 1.60 1 34 

mp-30100 Li2B2Se5 0.952 1.289 0.015 1 1.776 2.308 27 0 67 

mp-862658 LiCu3 0.976 1.455 0.008 0 0.117 0.123 1.10 1 34 

mp-13474 LiErGe 0.956 1.454 0.017 1 0 2.132 270 0 54 

mp-861651 Li2PdPb 0.955 1.246 0.015 1 0 0.767 1500 1 69 

mp-571566 Li2ZnSi 0.981 1.43 0.008 1 0 0.56 1.00 1 34 

mp-569373 Li8Zn2Ge3 0.988 1.314 0.005 1 0 0.567 18 1 54 

mp-976114 Li2CdHg 0.987 1.453 0.006 1 0 0.632 1.70 1 66 

mp-865935 Li2MgSn 0.985 1.444 0.006 1 0 0.663 1.20 0 47 

mp-14210 LiGdGe 0.966 1.497 0.014 1 0 2.105 19 0 54 

mp-9915 LiBeP 0.965 1.206 0.011 1 1.159 1.763 33 0 50 

mp-9719 Na2LiAlP2 0.956 1.382 0.017 1 1.885 3.852 4.60 0 34



Figure S1: Confirmation of upper bound on oxidation potential. Above we see the 
formation energy-based oxidative decomposition potential estimates we employ in 
this work versus rigorously calculated oxidative decomposition potentials reported 
in Ref. [22]. With two slight exceptions, the formation energy based potentials are 
always greater than the DFT-calculated potentials (the potentials are equal on the 
dotted y=x reference line). This suggests that the simple formation energy based 
estimates are generally upper bounds on the true decomposition potentials, as we 
expect from our analysis in Section 2.3. The estimates are especially accurate in the 
interval [0, 3], the range most relevant to LIB operation.



Figure S2: Straight-line path width and electronegativity calculation. To calculate 
features SLPW and SLPE (1.17 and 1.18), we draw a straight line connecting each 
lithium atom i with its nearest lithium atom j in the supercell. We project the 
coordinates of all other atoms in the lattice onto this line and find the atom that 
gives the minimum distance connecting the straight line to the edge of the hard 
sphere defined by the atom. Atoms that do not project down onto a point between Li 
atoms i and j are ignored, e.g. atom Y is ignored (since θY > 90°) but atom X is not (θX 
< 90°). The minimum distance h is considered the straight-line path width for Li 
atom i. To calculate feature SLPW, we perform this width calculation for all Li atoms 
and take the average value. To calculate feature SLPE, we evaluate the Pauling 
electronegativity of the atom responsible for the minimum path width (atom X).



Figure S3: Flowchart for Metropolis Monte Carlo-style structural evolution. The 
above flowchart describes one step in the Monte Carlo scheme for swapping two 
atoms and/or vacancies in a structure with fractionally occupied sites. After each 
step, whether the trial structure is accepted or not, the feature vector of the 
resulting structure is calculated and added to the running average until convergence 
is reached. P(xi

(j)) represents the occupation probability of atom type j in site i. Note 
that choosing the two sites 1 and 2 uniformly at random preserves detailed balance. 
Trial structures that are identical to the previous structure (i.e. two identical atoms 
or two vacancies are swapped) or are otherwise unfeasible structures (i.e. two non-
interchangeable atoms are swapped), are ignored and their features are never 
sampled.  



Figure S4: Metropolis convergence thresholds. The Metropolis structure evolution 
algorithm ends when convergence is reached. Convergence is defined as the point in 
which the running feature means of all features deviate by less than 1% for 100 
consecutive steps. To visualize this degree of convergence relative to the spread of 
feature values across the training set, the 1%-of-mean values for all converged 
features for all training materials with fractional occupancies are normalized by the 
standard deviation of that feature value across the entire training set. Note that all 
features are converged within 10% of the training set feature spread. 



Figure S5: Conductivity threshold effects. The conductivity threshold for positive and 
negative classification affects the CVMR rate of the optimal model. The CVMR peaks 
when approximately 40% of the training set examples belong to the positive class, 
corresponding to a threshold of 10-5 S/cm. The threshold value of 10-4 S/cm we use 
in our screening is chosen due to technological requirements. Note the CVMR for the 
X-randomized case is always significantly higher than the CVMR of the true models. 
The false positive rate for the X-randomized case follows the trend of y=1-x, which 
we would expect from random drawing of materials. The false positive rate for the 
10-4 S/cm cutoff model (indicated on the graph with the black arrow) is four times 
lower than that of the X-randomized models, suggesting a fourfold improvement 
over trial-and-error materials testing.
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