Supporting information for: Large scale in silico screening of materials for carbon capture through chemical looping

Cindy Y. Lau,^{†,¶} Matthew T. Dunstan,^{‡,¶} Wenting Hu,[†] Clare P. Grey,^{*,‡} and Stuart A. Scott^{*,†}

[†]Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom

[‡]Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom

 $\P Contributed \ equally \ to \ this \ work$

E-mail: cpg27@cam.ac.uk; sas37@cam.ac.uk

Candidate sample masses for TGA experiments

The sample masses for the initial TGA characterisation for the candidate materials are shown in Table S1.

Compound	Sample mass (mg)
SrFeO_3	15.8
$BaFeO_3$	23.5
$BaBiO_3$	25.0
$BaCoO_3$	27.9

Table S1: Masses of the candidate materials used in the TGA experiments.

Candidate materials obtained from the screening

The 108 materials obtained after restricting the screening results to those involving only single oxide to oxide reactions, containing relatively safe and abundant elements, are summarised in Table S2. Materials that are particularly interesting due to their oxygen capacity or $T_{reduction}$ at $p_{O_2} = 0.21$ bar are shown in bold.

Compound	$\Delta H_{reduction}$	O_2 capacity	$T_{reduction}$	Reaction
	$kJ mol^{-1}$	$g_{O_2}/g_{sorbent}$	Κ	
$\mathrm{Ta}_2\mathrm{O}_5$	39.4	0.543	207	$0.133\mathrm{Ta_2O_5} + \mathrm{O_2} \longrightarrow 0.267\mathrm{TaO_{10}}$
$\mathrm{BaH_4O_3}$	43.4	0.253	226	$0.667\mathrm{BaH_4O_3} + \mathrm{O_2} \longrightarrow 0.667\mathrm{Ba}(\mathrm{H_2O_3})_2$
SeO_2	46.9	0.072	242	$4{\rm SeO}_2 + {\rm O}_2 \longrightarrow 2{\rm Se}_2{\rm O}_5$
$\mathrm{Cu}_2\mathrm{P}_2\mathrm{O}_7$	50.9	0.053	259	$2\operatorname{Cu_2P_2O_7}^+\operatorname{O_2} \longrightarrow 4\operatorname{CuPO_4}$
$\mathrm{Bi}_4\mathrm{O}_7$	52.8	0.017	268	$2\operatorname{Bi}_4\operatorname{O_7}^+\operatorname{O_2} \longrightarrow 8\operatorname{BiO_2}$

Table S2: Theoretically derived reduction reaction parameters for the candidates obtained from the screening, restricted to single oxide to oxide reactions from relatively safe and abundant elements.

$\mathrm{Pr}_{2}\mathrm{O}_{3}$	54.3	0.029	275	$3.333\mathrm{Pr}_2\mathrm{O}_3 + \mathrm{O}_2 \longrightarrow 1.333\mathrm{Pr}_5\mathrm{O}_9$
$Ba(HO)_2$	59.5	0.187	298	$\mathrm{Ba(OH)}_2 + \mathrm{O}_2 \longrightarrow \mathrm{Ba(HO}_2)_2$
K_2O_2	66.2	0.290	327	$\mathrm{K_2O_2} + \mathrm{O_2} \longrightarrow 2\mathrm{KO_2}$
Na_2O	69.3	0.774	341	$0.667\mathrm{Na_2O} + \mathrm{O_2} \longrightarrow 1.333\mathrm{NaO_2}$
CuO	70.0	0.101	343	$4\mathrm{CuO} + \mathrm{O_2} \longrightarrow 2\mathrm{Cu_2O_3}$
$\rm NaMnO_2$	70.1	0.291	344	$\mathrm{NaMnO}_2 + \mathrm{O}_2 \longrightarrow \mathrm{NaMnO}_4$
$\rm Li_2O$	74.8	0.535	364	$2\mathrm{Li}_2\mathrm{O} + \mathrm{O}_2 \longrightarrow 2\mathrm{Li}_2\mathrm{O}_2$
SrO	83.8	0.154	402	$2{\rm SrO} + {\rm O}_2 \longrightarrow 2{\rm SrO}_2$
${\rm Mn}({\rm PO}_3)_2$	84.1	0.075	404	$2\mathrm{Mn}(\mathrm{PO}_3)_2 + \mathrm{O}_2 \longrightarrow 2\mathrm{Mn}\mathrm{P}_2\mathrm{O}_7$
$\mathrm{Cs}_2\mathrm{O}_2$	86.7	0.107	415	$\mathrm{Cs_2O_2} + \mathrm{O_2} \longrightarrow 2\mathrm{CsO_2}$
$\mathrm{CaSe_2O_5}$	87.8	0.058	419	$2\mathrm{CaSe_2O_5} + \mathrm{O_2} \longrightarrow 2\mathrm{Ca(SeO_3)_2}$
$\rm Nd_2O_3$	92.7	0.095	440	$\mathrm{Nd}_2\mathrm{O}_3 + \mathrm{O}_2 \longrightarrow \mathrm{Nd}_2\mathrm{O}_5$
${ m SiO}_2$	94.2	0.044	446	$12\mathrm{SiO}_2 + \mathrm{O}_2 \longrightarrow 2\mathrm{Si}_6\mathrm{O}_{13}$
YbO	97.9	0.085	461	$2\mathrm{YbO} + \mathrm{O_2} \longrightarrow 2\mathrm{YbO_2}$
$\rm Sr_8Fe_8O_{23}$	104.4	0.011	488	$2\mathrm{Sr_8Fe_8O_{23}+O_2} \longrightarrow 16\mathrm{SrFeO_3}$
MoP_2O_7	108.2	0.059	503	$2 \operatorname{MoP}_2\operatorname{O}_7 + \operatorname{O}_2 \longrightarrow 2 \operatorname{Mo}(\operatorname{PO}_4)_2$
${\rm Ce}({\rm SeO}_3)_2$	108.7	0.081	505	$\mathrm{Ce}(\mathrm{SeO}_3)_2 + \mathrm{O}_2 \longrightarrow \mathrm{Ce}(\mathrm{SeO}_4)_2$
${\rm Bi}_2{\rm O}_3$	110.6	0.034	513	$2\operatorname{Bi}_2\operatorname{O}_3 + \operatorname{O}_2 \longrightarrow 4\operatorname{BiO}_2$
$\mathrm{Ba}_4\mathrm{Fe}_4\mathrm{O}_{11}$	115.1	0.017	531	$2\operatorname{Ba}_4\operatorname{Fe}_4\operatorname{O}_{11}+\operatorname{O}_2 \longrightarrow 8\operatorname{BaFeO}_3$
$\rm ZnSeO_3$	124.6	0.083	570	$2\mathrm{ZnSeO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{ZnSeO}_4$
K_2O	134.9	0.510	611	$0.667\mathrm{K_2O} + \mathrm{O_2} \longrightarrow 1.333\mathrm{KO_2}$
$\rm EuMnO_3$	136.1	0.031	616	$4\mathrm{EuMnO_3} + \mathrm{O_2} \longrightarrow 2\mathrm{Eu_2Mn_2O_7}$
YbVO_3	136.3	0.029	616	$4\mathrm{Yb}\mathrm{VO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{Yb}_2\mathrm{V}_2\mathrm{O}_7$
$\rm Mn_3Se_3O_{10}$	137.1	0.057	620	$\mathrm{Mn_3Se_3O_{10}+O_2 \longrightarrow 3MnSeO_4}$
CoO	137.3	0.214	621	$2\operatorname{CoO}+\operatorname{O_2}\longrightarrow 2\operatorname{CoO_2}$
VSO_5	139.1	0.049	628	$4\mathrm{VSO}_5 + \mathrm{O}_2 \longrightarrow 2\mathrm{V}_2\mathrm{S}_2\mathrm{O}_{11}$
${\rm Mn}_2{\rm O}_3$	141.0	0.101	635	$2\mathrm{Mn_2O_3} + \mathrm{O_2} \longrightarrow 4\mathrm{MnO_2}$

NiSeO_3	142.8	0.086	642	$2\mathrm{NiSeO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{NiSeO}_4$
Cs_2O	143.5	0.170	645	$0.667\mathrm{Cs_2O} + \mathrm{O_2} \longrightarrow 1.333\mathrm{CsO_2}$
$Sc_2(SeO_3)_3$	156.0	0.102	694	$0.667\mathrm{Sc}_2(\mathrm{SeO}_3)_3 + \mathrm{O}_2 \longrightarrow 0.667\mathrm{Sc}_2(\mathrm{SeO}_4)_3$
BaO	161.4	0.104	715	$2\operatorname{BaO}+\operatorname{O_2} \longrightarrow 2\operatorname{BaO_2}$
${\rm LiBiO}_2$	162.1	0.065	718	$2\mathrm{LiBiO}_2 + \mathrm{O}_2 \longrightarrow 2\mathrm{LiBiO}_3$
${\rm MnSe_2O_5}$	163.3	0.055	723	$2\mathrm{MnSe_2O_5} + \mathrm{O_2} \longrightarrow 2\mathrm{Mn}(\mathrm{SeO_3})_2$
SrCuO_2	164.6	0.044	728	$4\mathrm{SrCuO}_2 + \mathrm{O}_2 \longrightarrow 2\mathrm{Sr}_2\mathrm{Cu}_2\mathrm{O}_5$
$\rm Sr_2Fe_2O_5$	168.2	0.044	742	$2\operatorname{Sr}_2\operatorname{Fe}_2\operatorname{O}_5+\operatorname{O}_2 \longrightarrow 4\operatorname{SrFeO}_3$
$\mathrm{Rb}_2\mathrm{O}_3$	168.8	0.219	744	$0.667\mathrm{Rb}_2\mathrm{O}_3 + \mathrm{O}_2 \longrightarrow 1.333\mathrm{RbO}_3$
$\rm Mn_2P_2O_7$	169.0	0.056	745	$2\mathrm{Mn_2P_2O_7} + \mathrm{O_2} \longrightarrow 4\mathrm{MnPO_4}$
$\mathrm{Ho}_{2}(\mathrm{SeO}_{3})_{3}$	172.0	0.068	756	$0.667 \operatorname{Ho}_2(\mathrm{SeO}_3)_3 + \mathrm{O}_2 \longrightarrow 0.667 \operatorname{Ho}_2(\mathrm{SeO}_4)_3$
V_3O_7	177.1	0.030	776	$4\mathrm{V_3O_7} + \mathrm{O_2} \longrightarrow 6\mathrm{V_2O_5}$
$\mathrm{Ti}_3\mathrm{O}_5$	178.2	0.394	780	$0.364\mathrm{Ti}_3\mathrm{O}_5 + \mathrm{O}_2 \longrightarrow 0.545\mathrm{Ti}_2\mathrm{O}_7$
$\rm Mn_3O_4$	178.6	0.140	782	$\rm Mn_3O_4 + O_2 \longrightarrow 3MnO_2$
$\mathrm{Ba_2Fe_2O_5}$	188.8	0.034	821	$2\operatorname{Ba}_2\operatorname{Fe}_2\operatorname{O}_5+\operatorname{O}_2 \longrightarrow 4\operatorname{BaFeO}_3$
${\rm CoSeO}_3$	190.0	0.086	825	$2\mathrm{CoSeO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{CoSeO}_4$
Cs_3O	192.7	0.193	836	$0.4\mathrm{Cs_3O} + \mathrm{O_2} \longrightarrow 1.2\mathrm{CsO_2}$
KBiO_2	193.2	0.057	838	$2\mathrm{KBiO}_2 + \mathrm{O}_2 \longrightarrow 2\mathrm{KBiO}_3$
MoPO_5	197.9	0.039	856	$4 \operatorname{MoPO}_5 + \operatorname{O}_2 \longrightarrow 2 \operatorname{Mo}_2 \operatorname{P}_2 \operatorname{O}_{11}$
${\rm MnSeO}_3$	198.0	0.088	856	$2\mathrm{MnSeO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{MnSeO}_4$
$\rm Na_2Mn_2O_3$	200.4	0.392	865	$0.4\mathrm{Na_2Mn_2O_3} + \mathrm{O_2} \longrightarrow 0.8\mathrm{NaMnO_4}$
$\rm SmMnO_3$	200.5	0.032	865	$4\mathrm{SmMnO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{Sm}_2\mathrm{Mn}_2\mathrm{O}_7$
NaBiO_2	205.6	0.061	885	$2\mathrm{NaBiO}_2 + \mathrm{O}_2 \longrightarrow 2\mathrm{NaBiO}_3$
TlPO_3	210.3	0.056	902	$2\mathrm{TlPO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{TlPO}_4$
$\mathrm{Cs}_{11}\mathrm{O}_3$	211.7	0.201	908	$0.105\mathrm{Cs_{11}O_3} + \mathrm{O_2} \longrightarrow 1.158\mathrm{CsO_2}$
$Mo_2(PO_4)_3$	212.8	0.034	912	$2\operatorname{Mo}_2(\operatorname{PO}_4)_3 + \operatorname{O}_2 \longrightarrow 2\operatorname{Mo}_2\operatorname{P}_3\operatorname{O}_{13}$
MgSeO_3	213.9	0.106	916	$2\mathrm{MgSeO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{MgSeO}_4$

$\rm Cu_2O$	215.0	0.224	920	$\mathrm{Cu}_2\mathrm{O} + \mathrm{O}_2 \longrightarrow \mathrm{Cu}_2\mathrm{O}_3$
$\rm LuMnO_3$	227.2	0.029	966	$4\mathrm{LuMnO_3} + \mathrm{O_2} \longrightarrow 2\mathrm{Lu_2Mn_2O_7}$
$\rm Rb_2O$	229.4	0.428	974	$0.4\mathrm{Rb_2O} + \mathrm{O_2} \longrightarrow 0.8\mathrm{RbO_3}$
TmMnO_3	231.5	0.029	982	$4\mathrm{Tm}\mathrm{MnO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{Tm}_2\mathrm{Mn}_2\mathrm{O}_7$
${\rm ErMnO}_3$	233.2	0.030	988	$4\mathrm{ErMnO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{Er}_2\mathrm{Mn}_2\mathrm{O}_7$
VO_2	233.6	0.096	989	$4\mathrm{VO}_2 + \mathrm{O}_2 \longrightarrow 2\mathrm{V}_2\mathrm{O}_5$
$\rm DyMnO_3$	233.7	0.030	990	$4\mathrm{DyMnO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{Dy}_2\mathrm{Mn}_2\mathrm{O}_7$
${\rm HoMnO}_3$	234.2	0.030	992	$4\mathrm{HoMnO_3} + \mathrm{O_2} \longrightarrow 2\mathrm{Ho_2Mn_2O_7}$
$\rm YMnO_3$	236.6	0.042	1001	$4\mathrm{YMnO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{Y}_2\mathrm{Mn}_2\mathrm{O}_7$
$\rm Ti_2O_3$	237.2	0.445	1003	$0.5\mathrm{Ti_2O_3} + \mathrm{O_2} \longrightarrow 0.5\mathrm{Ti_2O_7}$
SbO_2	237.8	0.052	1005	$4{\rm SbO}_2 + {\rm O}_2 \longrightarrow 2{\rm Sb}_2{\rm O}_5$
$\rm Cs_7O$	249.1	0.220	1047	$0.154\mathrm{Cs_7O} + \mathrm{O_2} \longrightarrow 1.077\mathrm{CsO_2}$
$\mathrm{P}_{2}\mathrm{WO}_{7}$	249.7	0.045	1049	$2\mathrm{P}_2\mathrm{WO}_7 + \mathrm{O}_2 \longrightarrow 2\mathrm{P}_2\mathrm{WO}_8$
SrSeO_3	259.6	0.075	1085	$2\mathrm{SrSeO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{SrSeO}_4$
PWO_5	263.1	0.027	1099	$4\mathrm{PWO}_5 + \mathrm{O}_2 \longrightarrow 2\mathrm{P}_2\mathrm{W}_2\mathrm{O}_{11}$
TbMnO_3	263.5	0.031	1100	$4\mathrm{Tb}\mathrm{MnO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{Tb}_2\mathrm{Mn}_2\mathrm{O}_7$
BaSeO_3	263.7	0.061	1101	$2\mathrm{BaSeO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{BaSeO}_4$
VPO_4	264.8	0.110	1105	$2\mathrm{VPO}_4 + \mathrm{O}_2 \longrightarrow 2\mathrm{VPO}_5$
${\rm LaCuO}_2$	266.1	0.068	1109	$2{\rm LaCuO}_2 + {\rm O}_2 \longrightarrow 2{\rm LaCuO}_3$
${\rm Li}_{3}{\rm BiO}_{3}$	267.5	0.058	1114	$2\mathrm{Li}_3\mathrm{BiO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{Li}_3\mathrm{BiO}_4$
$\mathrm{Rb}_9\mathrm{O}_2$	269.2	0.499	1121	$0.08\mathrm{Rb}_9\mathrm{O}_2 + \mathrm{O}_2 \longrightarrow 0.72\mathrm{RbO}_3$
EuSeO_3	270.1	0.057	1124	$2\mathrm{EuSeO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{EuSeO}_4$
$\rm SmCuO_2$	275.5	0.065	1144	$2{\rm SmCuO}_2 + {\rm O}_2 \longrightarrow 2{\rm SmCuO}_3$
MnO	276.1	0.226	1146	$2\mathrm{MnO} + \mathrm{O_2} \longrightarrow 2\mathrm{MnO_2}$
${ m Rb}_6{ m O}$	278.0	0.514	1153	$0.118 \mathrm{Rb}_6\mathrm{O} + \mathrm{O}_2 \longrightarrow 0.706\mathrm{RbO}_3$
$\rm K_4I_2O$	278.8	0.300	1156	$0.25\mathrm{K}_4\mathrm{I}_2\mathrm{O} + \mathrm{O}_2 \longrightarrow 0.25\mathrm{K}_4\mathrm{I}_2\mathrm{O}_9$
$\mathrm{Sr_2Bi_2O_5}$	280.4	0.024	1162	$2\mathrm{Sr_2Bi_2O_5} + \mathrm{O_2} \longrightarrow 4\mathrm{SrBiO_3}$

$\rm Na_2 SeO_3$	289.1	0.093	1193	$2\operatorname{Na}_2{\operatorname{SeO}}_3 + \operatorname{O}_2 \longrightarrow 2\operatorname{Na}_2{\operatorname{SeO}}_4$
LiCuO	290.7	0.185	1199	$2{\rm LiCuO}+{\rm O}_2 \longrightarrow 2{\rm LiCuO}_2$
VBO_3	293.2	0.146	1208	$2\mathrm{VBO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{VBO}_4$
$\mathrm{Tl}_4\mathrm{O}_3$	293.2	0.055	1208	$0.667\mathrm{Tl_4O_3} + \mathrm{O_2} \longrightarrow 1.333\mathrm{Tl_2O_3}$
$\mathrm{Mo_8O_{23}}$	297.2	0.014	1223	$2\operatorname{Mo}_8\operatorname{O}_{23}+\operatorname{O}_2 \longrightarrow 16\operatorname{MoO}_3$
$\mathrm{Tl}_2\mathrm{O}$	301.1	0.075	1236	$\mathrm{Tl_2O} + \mathrm{O_2} \longrightarrow \mathrm{Tl_2O_3}$
$\rm V_3O_5$	309.5	0.172	1267	$0.8\mathrm{V_3O_5} + \mathrm{O_2} \longrightarrow 1.2\mathrm{V_2O_5}$
${\rm MoO}_2$	317.0	0.125	1294	$2 \operatorname{MoO}_2 + \operatorname{O}_2 \longrightarrow 2 \operatorname{MoO}_3$
$\mathrm{Mo_2P_3O_{11}}$	325.7	0.069	1325	$\mathrm{Mo_2P_3O_{11}+O_2} \longrightarrow \mathrm{Mo_2P_3O_{13}}$
SbPO_4	326.7	0.074	1328	$2{\rm SbPO}_4 + {\rm O}_2 \longrightarrow 2{\rm SbPO}_5$
K ₃ IO	329.2	0.246	1337	$0.5\mathrm{K_{3}IO} + \mathrm{O_{2}} \longrightarrow 0.5\mathrm{K_{3}IO_{5}}$
NaCuO	332.3	0.156	1348	$2\mathrm{NaCuO} + \mathrm{O_2} \longrightarrow 2\mathrm{NaCuO_2}$
$\mathrm{V_2O_3}$	334.4	0.214	1356	$\mathrm{V_2O_3} + \mathrm{O_2} \longrightarrow \mathrm{V_2O_5}$
$\rm Sr_2Mn_2O_5$	339.6	0.044	1374	$2\mathrm{Sr_2Mn_2O_5} + \mathrm{O_2} \longrightarrow 4\mathrm{SrMnO_3}$
$\mathrm{Sb}_2\mathrm{O}_3$	340.2	0.110	1376	$\mathrm{Sb}_2\mathrm{O}_3 + \mathrm{O}_2 \longrightarrow \mathrm{Sb}_2\mathrm{O}_5$
$\rm Ba_2Bi_2O_5$	342.0	0.021	1383	$2\operatorname{Ba}_2\operatorname{Bi}_2\operatorname{O}_5+\operatorname{O}_2 \longrightarrow 4\operatorname{BaBiO}_3$
${ m Na_3BiO_3}$	346.5	0.049	1399	$2\mathrm{Na_3BiO_3} + \mathrm{O_2} \longrightarrow 2\mathrm{Na_3BiO_4}$
${\rm MgVO}_3$	346.9	0.065	1400	$4\mathrm{MgVO}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{Mg}_2\mathrm{V}_2\mathrm{O}_7$
CsCuO	354.0	0.075	1425	$2\mathrm{CsCuO} + \mathrm{O_2} \longrightarrow 2\mathrm{CsCuO_2}$
KCuO	356.7	0.135	1435	$2\mathrm{KCuO} + \mathrm{O_2} \longrightarrow 2\mathrm{KCuO_2}$
BaCoO_2	359.3	0.070	1444	$2\operatorname{BaCoO}_2 + \operatorname{O}_2 \longrightarrow 2\operatorname{BaCoO}_3$
NaNO_2	373.4	0.232	1494	$2\mathrm{NaNO}_2 + \mathrm{O}_2 \longrightarrow 2\mathrm{NaNO}_3$

Effect of heating rate on TGA experiments

Figure S1 shows the mass as a function of time and temperature for cycles of heating and cooling in the TGA with air injected through the reaction gas port. Owing to mixing in the TGA the actual concentration of oxygen at the surface of the sample would be approximately 1.5×10^4 Pa. The mass change of the sample is small so some influence due to the slight drift in the balance can be observed. However, it can be seen that the mass of sample at a given temperature is largely independent of the heating rate used on heating, and the mass rise on cooling at 20 K min⁻¹ follows the mass loss on heating at different heating rates, with little hysteresis. This indicates that the sample is coming to equilibrium with the instantaneous temperature and local partial pressure and that in this experiment there is little lag, with all heating rates showing similar mass vs sample temperature curves on heating. The exception is perhaps the heating rate at 20 K min⁻¹ per minute in these particular experiments, which shows a small amount of hysteresis. However, when a higher sample mass was used, as in the original data presented in Figure 3 of the manuscript (where the initial mass of sample was 15.8 mg), such hysteresis was not observed.

Figure S1: TGA traces for $\text{SrFeO}_{3-\delta}$, subjected to heating rates of 5, 10, 15 and 20 K min⁻¹ to 1173 K and then cooled to 50 K at 20 K min⁻¹. (a) and (b) second set of cycles, (c) third set of cycles. The cycles within a set were carried out in a random order.

Microstructure of $SrFeO_{3-\delta}$

Secondary and backscattered electron micrographs were collected using a field emission gun scanning electron microscope (Zeiss) operating at an accelerating voltage of 2.4 kV. SEM images of the as-prepared $\text{SrFeO}_{3-\delta}$ sample are shown in Figure S2. As expected from a close packed oxide material, there is negligible porosity or surface area observed in the sample.

Figure S2: SEM images of the $\mathrm{SrFeO}_{3\text{-}\delta}$ sample.

XRD of reduced candidate phases

XRD diffractograms of the as-prepared samples of $BaBiO_3$ and $BaCoO_3$, as well as the samples after reduction under N₂, are shown in Figure S3. In both cases, the reduction reactions proceed as predicted by the Materials Project, to $Ba_2Bi_2O_5$ and $BaCoO_2$ respectively.

Figure S3: XRD diffractograms (λ =1.5405 Å) for BaBiO₃ and BaCoO₃, both before and after reduction. In both cases, the phases remaining after reduction, Ba₂BiO₅ and BaCoO₂ respectively, match the predicted reduction reaction from the Materials Project.

Oxygen content of $SrFeO_{3-\delta}$

TGA experiments were performed on the as-synthesised $SrFeO_{3-\delta}$ sample (17 mg) under reducing 5% H₂ in N₂ gas flow to determine the oxygen content, the result of which is shown in Figure S4. The sample was removed after the first significant mass loss, corresponding to complete reduction to $SrFeO_{2.5}$. Subsequent XRD of the retrieved sample confirmed this full reduction to the brownmillerite phase. From the measured mass loss corresponding to this transition, the initial stiochiometry of the phase was determined to be $SrFeO_{2.78}$. The additional reduction in mass upon further heated is attributed to further reduction of the brownmillerite phase (which is only possible under such strongly reducing conditions used here).

Figure S4: Temperature programmed reduction of $\text{SrFeO}_{3-\delta}$ sample in the TGA. The sample was first heated in air, cooled and subjected to a cycle of heating and cooling at 20 K min⁻¹ to 1173 K. The experiment was terminated after the first significant mass loss, corresponding to complete reduction to $\text{SrFeO}_{2.5}$.

Isothermal pressure swing studies of $SrFeO_{3-\delta}$

TGA traces during isothermal pressure swing are shown in Figure S5, with all masses are normalised on the mass of the most oxidised sample in air at 473 K.

Figure S5: Isothermal pressure swing TGA traces with all masses normalised on the mass of the most oxidised sample in air at low temperature (473 K). Pressure swing of sample with pure $\text{SrFeO}_{3-\delta}$ in TGA for consecutive cycles of 30 min air - 30 min N₂ - 30 min air from 723 K to 1123 K.