Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2017

Solar photochemical-thermal water splitting at 140 °C with Cu-loaded TiO₂

Son Docao,^a Agni Raj Koirala,^a Min Gyu Kim,^b In Chul Hwang,^a Mee Kyung Song^a and Kyung Byung Yoon^{*a}

 ^aKorea Center for Artificial Photosynthesis, Department of Chemistry, Sogang University, Seoul 121-742, Korea.
^bPohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang, 790-784, Korea.
*e-mail: yoonkb@sogang.ac.kr

Figure S1. Illustration and bases for calculation of solar-to-H₂ conversion efficiency.

Figure S2. Illustration and bases for calculation of total solar energy input and total energy consumption.

Figure S3. XPS spectra of $Cu(n)/TiO_2$ with n = 0.5, 1.0, 2.0, and 3.0 in the region for $Cu2p_{3/2}$ and $Cu2p_{1/2}$ before (black) and after (red) irradiation with solar simulated light. The appearance of shake-up satellite peaks due to the ligand (O²⁻) to metal (a partially filled d orbital of Cu²⁺) at ~938 and ~958.5 eV shows that the initial oxidation state of Cu species in $Cu(n)/TiO_2$ is +2 and the decrease of the satellite peaks upon irradiation shows the solar light induced reduction of Cu^{2+} to Cu^+ or Cu^0 .

Figure S4. ESR spectra of Cu(n)/TiO2 with n = 0.5, 1.0, 2.0, 3.0, 5.0, 10.0, and 20.0 in the first derivative (a) and normal (b) forms. (c) Plot of the ESR intensity with respect to loading *n*.

Figure S5. ESR spectra of $Cu(0.5)/TiO_2$ and $Cu(1.0)/TiO_2$ before and after irradiation with solar simulated light showing the decrease of the Cu^{2+} signal and appearance of Ti^{3+} signal. A: First derivative spectra, B: Original spectra.

Figure S6. FT-IR spectra of the partially dried $Cu(0.5)/TiO_2$ obtained by dehydrating the pristine $Cu(0.5)/TiO_2$ by passing high purity N₂ into the environmental chamber at 140 °C for 5 h (a), the partially dried $Cu(0.5)/TiO_2$ after irradiation with a solar simulated light (b), the irradiated $Cu(0.5)/TiO_2$ after steam treatment at 140 °C in the dark (c), the steam treated partially dried $Cu(0.5)/TiO_2$ after the second time irradiation with a solar simulated light (d), after second steam treatment (e), after the their time irradiation (f), and after third steam treatment in the 2000-3800 (A) and 3400-3800 cm⁻¹ (B) regions.

Figure S7. The linear relationship between the total area of H_2 uptake by Cu^{2+} ions and the loaded amount of rigorously dried $Cu(0.5)/TiO_2$ in the sample holder.