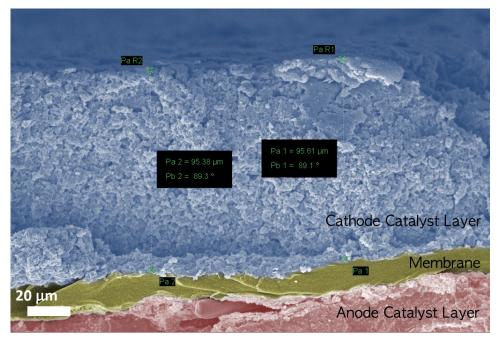

Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2016

Supporting Information


Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropore flooding?

Ja-Yeon Choi,^a Lijun Yang,^b Takeaki Kishimoto,^c Xiaogang Fu,^a Siyu Ye,^b Zhongwei Chen^{a*} and Dustin Banham^{b*}

- ^a Department of Chemical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, ON, Canada, N2L 3G1. Email: zhwchen@uwaterloo.ca
- ^b Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC, Canada, V5J 5J8. Email: dustin.banham@ballard.com
- ^c Nisshinbo Holdings Inc., Business Development Dept., 1-2-3 Onodai, Midori-ku, Chiba, Japan, 267-0056.

Figure S1: (a,b) N2 sorption isotherm, (c,d) pore size distributions, (e) cumulative pore volume and (f) pore volume distribution for Fe-N-C-Phen-PANI catalyst

Figure S2: Cross-sectional SEM image of MEA and the thickness measurement of the cathode catalyst layer with Fe-N-C-Phen-PANI catalyst.

 Table S1: Elemental composition of the Fe-N-C-Phen-PANI catalyst obtained by EDX

	C (Wt. %)	N (Wt. %)	O (Wt. %)	S (Wt. %)	Fe (Wt. %)
Fe-N-C-Phen-PANI	89.41	4.45	4.31	0.12	1.71