Electronic supplementary information

Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking

Kang Hyuck Lee,^a Doo Hee Cho,^a Young Mi Kim,^a Sun Ju Moon,^a Dong Won Shin,^{a,b}

Joon-Yong Sohn,^{a,c} Jeong F. Kim^a and Young Moo Lee^{a*}

^a Department of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea

^b Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea

^c Department of Energy Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeongdong, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea

*Corresponding author: Young Moo Lee, Tel. +82-2-2220-0525, Fax. +82-2-2291-5982,

E-mail: ymlee@hanyang.ac.kr

Fig. S1 ¹H-NMR spectra in D₂O of synthesized sodium salt of 3-hydroxyphenylacetylene as end-group cross-linker

Fig. S2 ¹H-NMR of synthesized copolymer E-Imd60 as a representative sample in DMSO-*d6*. (a) M-PAES: first synthetic step having tetra methyl moiety. (b) Br-PAES60: after radical benzylic bromination. (c) Imd-PAES60: 1-methyl imidazolium functionalized state. (d) E-Imd-PES60: After termination of end-group from –F to phenylacetylene cross-linker.

Samples	M _w ^a	וכות	$T_g^{\ b}$	T _{d 5%} ^c	Cross-linking Time ^d	Gel fraction ^e
	(kDa)	PDI	(°C)	(°C)	(min)	(%)
E-Imd60	186	2.5	260.5	234.5	-	-
E-Imd70	175	2.3	265.3	270.1	-	-
XE-Imd60	186	2.5	260.5	256.7	40	62
XE-Imd70	175	2.3	265.3	279.6	40	65

Table S1. Molecular weight, thermal and mechanical properties of Imd60 and 70 series. Cross-linking time and gel fraction of XE-Imd60 and 70.

^{*a*} Weight-based molecular weight measured by gel permeation chromatography (GPC). ^{*b*} Measured by differential scanning calorimetry (DSC).^{*c*} The 5% weight loss temperature. ^{*d*} Thermal end-group alkyne trimerization at 180 °C. ^{*e*} Gel fraction test in NMP at 100 °C for 12h.

Fig. S3 Thermal decomposition of 1-methytl imidazolium groups of E-Imds during TG-MS analysis.

Fig. S4 Stress-strain curves of pristine E-Imds and cross-linked XE-Imds. Measurements were carried out at least ten times for each sample, and the representative samples are shown.

Samples	Tensile Strength	Elongation at break	Young's Modulus	
	(MPa)	(%)	(GPa)	
E-Imd60	63.9 ± 5.2	39.9 ± 7.8	1.58	
E-Imd70	53.7 ± 4.9	30.4 ± 5.2	1.56	
XE-Imd60	66.5 ± 3.5	16.1 ± 2.3	1.69	
XE-Imd70	60.2 ± 3.3	23.7 ± 3.1	1.67	

Table S2. Mechanical properties of E-Imds and XE-Imds. Measurements were carried out at least ten times for each sample.

Samples	Density ^{<i>a</i>} $(g \text{ cm}^{-3})$	$\operatorname{IEC}_{w}^{b}$ (meq g ⁻¹)	$IEC_{v(dry)}$ (meq cm ⁻³)	$IEC_{v(wet)}$ (meq cm ⁻³)
E-Imd60	1.42	2.47	3.51	4.72
E-Imd70	1.48	2.77	4.10	5.63
XE-Imd60	1.45	2.43	3.52	4.12
XE-Imd70	1.51	2.72	4.11	4.95

Table S3. Density, IEC_w and IEC_v measured at 20 °C.

^{*a*} Measured at 20 °C. ^{*b*} Titration value by Mohr method.

Samples	λ	WU (wt%)	WU (vol%)	Δ _{//} (%)	Δ _⊥ (%)	$\sigma_{_{//}}$ (mS cm ⁻¹)	σ_{\perp} (mS cm ⁻¹)
E-Imd60	43	189.6	269.2	149 ± 8	117 ± 5	79 ± 1.5	75 ± 2.5
E-Imd70	45	225.6	333.9	171 ± 11	138 ± 5	82 ± 1.9	87 ± 1.5
XE-Imd60	21	92.4	134.0	48 ± 5	45 ± 2	99 ± 2.5	97 ± 2.7
XE-Imd70	24	115.6	174.6	62 ± 4	57 ± 2	103 ± 1.5	107 ± 1.8

Table S4. Hydration number, water uptake, swelling ratio and hydroxide conductivity of all membranes at 80 °C.

Fig. S5 (a) Conductivity cell fixture set for two-probe measurements. (b) Equipment picture and schematic cross-section figure of in-plane conductivity and (c) through-plane conductivity.

Gas permeability test

Table S5. Fuel (i.e., hydrogen) permeability of E-Imd60 and XE-Imd60 with values for the selected ion exchange membranes and commercial polysulfone membrane (Radel A-100[®]) for comparison.

Samples	E-Imd60	XE-Imd60	Nafion [®] 212 ^b	In0505 _{DMAc} ^{c,1}	Radel A-100 ^{® d,2}
P_{H^2} (Barrer ^{<i>a</i>})	1.6	2.5	6.7	8.80	10.8

^{*a*} 1 Barrer = 10^{-10} cm³ (STP) cm / cm² sec cm Hg

 b measured at 20±1 °C and 3.0 X 10⁵ Pa

^c measured at 20±1 °C and 3.0 X 10⁵ Pa, In0505_{DMAc} means partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions obtained by commercial polysulfone (Radel[®])

^c measured at 35 °C and 3 bar

Experimental

To investigate the effect of fuel (i.e., hydrogen) permeability, E-Imd60 and XE-Imd60 were selected. As a representative sample of aliphatic hydrocarbon-based membranes, Nafion 212 was also tested for comparison although it is a cation exchange membrane. Gas permeation experiments were conducted with an in-house instrument using the constant-pressure/variable-volume method (time-lag method).³ Hydrogen permeability coefficients were determined in the steady-state downstream pressure region as a function of time using the following equation:³

$$P = \left(\frac{273.15 \cdot V \cdot l}{76 \cdot T \cdot \Delta p \cdot A}\right) \frac{dp}{dt}$$

where *P* (Barrer) is the hydrogen permeability, $V(\text{cm}^3)$ is the volume of downstream chamber, *l* (cm) is the membrane thickness, *T* (K) is the operation temperature (35 °C in this study), Δp (cmHg) is the pressure difference between upstream and downstream (76 cmHg), *A* (cm²) is the effective membrane area, and dp/dt is the rate of pressure increase in the downstream chamber.

Results and discussion

Hydrogen permeability for reference Nafion[®] 212 was 6.7 Barrer (1 Barrer = 10^{-10} cm³ (STP) cm / cm² sec cm Hg), which is in good agreement with the result from the literature.⁴ E-Imd60 showed a hydrogen permeability of 1.6 Barrer, indicating that it showed an enhancement in hydrogen barrier properties compared to the Nafion[®] 212 due to highly packed aromatic matrix. Upon end-group crosslinking, hydrogen permeability of XE-Imd60 apparently increased to 2.5 Barrer, however, it still represented lower hydrogen permeability than that of Nafion[®] 212. It can be postulated that the end-group cross-linking step induced the resulting membranes with larger tortuosity and fractional free volume.^{3, 4} In comparison to the In0505_{DMAc}, partially

fluorinated sulfonated poly(arylene ether sulfone) multiblock cation exchange membranes, XE-Imd60 still represented enhanced hydrogen barrier properties.

References

- 1. L. Assumma, H.-D. Nguyen, C. Iojoiu, S. Lyonnard, R. Mercier and E. Espuche, *ACS applied materials & interfaces*, 2015, **7**, 13808-13820.
- 2. M. KARĞILI, MIDDLE EAST TECHNICAL UNIVERSITY, 2015.
- 3. Y. Zhuang, J. G. Seong, Y. S. Do, W. H. Lee, M. J. Lee, Z. Cui, A. E. Lozano, M. D. Guiver and Y. M. Lee, *Chemical Communications*, 2016, **52**, 3817-3820.
- 4. S. Naudy, F. Collette, F. Thominette, G. Gebel and E. Espuche, *Journal of Membrane Science*, 2014, **451**, 293-304.