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Fig. S1 1H-NMR spectra in D2O of synthesized sodium salt of 3-hydroxyphenylacetylene as 
end-group cross-linker 
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Fig. S2 1H-NMR of synthesized copolymer E-Imd60 as a representative sample in DMSO-d6. 
(a) M-PAES: first synthetic step having tetra methyl moiety. (b) Br-PAES60: after radical 
benzylic bromination. (c) Imd-PAES60: 1-methyl imidazolium functionalized state. (d) E-Imd-
PES60: After termination of end-group from –F to phenylacetylene cross-linker.
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Table S1. Molecular weight, thermal and mechanical properties of Imd60 and 70 series. 
Cross-linking time and gel fraction of XE-Imd60 and 70.

a Weight-based molecular weight measured by gel permeation chromatography (GPC). b 

Measured by differential scanning calorimetry (DSC).c The 5% weight loss temperature. d 

Thermal end-group alkyne trimerization at 180 oC. e Gel fraction test in NMP at 100 oC for 12h.

Mw a Tg
 b Td 5%

 c Cross-linking
Time d Gel fraction e

Samples
(kDa)

PDI
(°C) (°C) (min) (%)

E-Imd60 186 2.5 260.5 234.5 - -

E-Imd70 175 2.3 265.3 270.1 - -

XE-Imd60 186 2.5 260.5 256.7 40 62

XE-Imd70 175 2.3 265.3 279.6 40 65
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Fig. S3 Thermal decomposition of 1-methytl imidazolium groups of E-Imds during TG-MS 
analysis.
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Fig. S4 Stress-strain curves of pristine E-Imds and cross-linked XE-Imds. Measurements were 
carried out at least ten times for each sample, and the representative samples are shown.
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Table S2. Mechanical properties of E-Imds and XE-Imds. Measurements were carried out at 
least ten times for each sample.

Tensile
Strength

Elongation
at break

Young’s
ModulusSamples

(MPa) (%) (GPa)

E-Imd60 63.9 ± 5.2 39.9 ± 7.8 1.58

E-Imd70 53.7 ± 4.9 30.4 ± 5.2 1.56

XE-Imd60 66.5 ± 3.5 16.1 ± 2.3 1.69

XE-Imd70 60.2 ± 3.3 23.7 ± 3.1 1.67
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Table S3. Density, IECw and IECv measured at 20 °C.

Samples
Density a

(g cm-3)

IECw
 b

(meq g-1)

IECv(dry)

(meq cm-3)

IECv(wet)

(meq cm-3)

E-Imd60 1.42 2.47 3.51 4.72

E-Imd70 1.48 2.77 4.10 5.63

XE-Imd60 1.45 2.43 3.52 4.12

XE-Imd70 1.51 2.72 4.11 4.95

a Measured at 20 °C. b Titration value by Mohr method.
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Table S4. Hydration number, water uptake, swelling ratio and hydroxide conductivity of all 
membranes at 80 °C.

Samples λ WU
(wt%)

WU
 (vol%)

//∆
(%)

┴∆
(%)

//
 𝜎

(mS cm-1)
┴𝜎

(mS cm-1)

E-Imd60 43 189.6 269.2 149 ± 8 117 ± 5 79 ± 1.5 75 ± 2.5

E-Imd70 45 225.6 333.9 171 ± 11 138 ± 5 82 ± 1.9 87 ± 1.5

XE-Imd60 21 92.4 134.0 48 ± 5 45 ± 2 99 ± 2.5 97 ± 2.7

XE-Imd70 24 115.6 174.6 62 ± 4 57 ± 2 103 ± 1.5 107 ± 1.8
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Fig. S5 (a) Conductivity cell fixture set for two-probe measurements. (b) Equipment picture 
and schematic cross-section figure of in-plane conductivity and (c) through-plane conductivity.
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Gas permeability test

Table S5. Fuel (i.e., hydrogen) permeability of E-Imd60 and XE-Imd60 with values for the 
selected ion exchange membranes and commercial polysulfone membrane (Radel A-100®) for 
comparison.

a 1 Barrer = 10-10 cm3 (STP) cm / cm2 sec cm Hg
b
 measured at 20±1 oC and 3.0 X 105 Pa

c measured at 20±1 oC and 3.0 X 105 Pa, In0505DMAc means partially fluorinated poly(arylene ether sulfone) multiblock 
copolymers bearing perfluorosulfonic functions obtained by commercial polysulfone (Radel®)
c measured at 35 oC and 3 bar

Experimental

To investigate the effect of fuel (i.e., hydrogen) permeability, E-Imd60 and XE-Imd60 were 
selected. As a representative sample of aliphatic hydrocarbon-based membranes, Nafion 212 
was also tested for comparison although it is a cation exchange membrane. Gas permeation 
experiments were conducted with an in-house instrument using the constant-pressure/variable-
volume method (time-lag method).3 Hydrogen permeability coefficients were determined in 
the steady-state downstream pressure region as a function of time using the following 
equation:3

𝑃= (273.15 ∙ 𝑉 ∙ 𝑙76 ∙ 𝑇 ∙ ∆𝑝 ∙ 𝐴)𝑑𝑝𝑑𝑡
where P (Barrer) is the hydrogen permeability, V (cm3) is the volume of downstream chamber, 
l (cm) is the membrane thickness, T (K) is the operation temperature (35 oC in this study), Δp 
(cmHg) is the pressure difference between upstream and downstream (76 cmHg), A (cm2) is 
the effective membrane area, and dp/dt is the rate of pressure increase in the downstream 
chamber.

Results and discussion

Hydrogen permeability for reference Nafion® 212 was 6.7 Barrer (1 Barrer = 10-10 cm3 (STP) 
cm / cm2 sec cm Hg), which is in good agreement with the result from the literature.4 E-Imd60 
showed a hydrogen permeability of 1.6 Barrer, indicating that it showed an enhancement in 
hydrogen barrier properties compared to the Nafion® 212 due to highly packed aromatic matrix. 
Upon end-group crosslinking, hydrogen permeability of XE-Imd60 apparently increased to 2.5 
Barrer, however, it still represented lower hydrogen permeability than that of Nafion® 212. It 
can be postulated that the end-group cross-linking step induced the resulting membranes with 
larger tortuosity and fractional free volume.3, 4 In comparison to the In0505DMAc, partially 

Samples E-Imd60 XE-Imd60 Nafion® 212b In0505DMAc
c,1 Radel A-100® d,2

PH2 (Barrer a) 1.6 2.5 6.7 8.80 10.8
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fluorinated sulfonated poly(arylene ether sulfone) multiblock cation exchange membranes, 
XE-Imd60 still represented enhanced hydrogen barrier properties.
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