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Experimental Section

Material Synthesis: K2TP was synthesized by refluxing. Briefly, 1.935 g of potassium 

hydroxide was dissolved in 40 mL of deionized water under stirring. Then, 1.73 g of 

terephthalic acid was added to the above solution at 50 oC, and absolute ethanol was 

added to precipitate the product at 90 oC. After refluxing for 12 h, the as-obtained 

precipitate was filtered with ethanol and vacuum-dried at 150 oC overnight.

Material Characterization: The as-synthesized K2TP was characterized by power X-

ray diffraction (XRD) on a Rigaku X-2500 diffractometer using Cu Kα radiation, 

scanning electron microscopy (SEM, JEOL JSM-7500F), and infrared spectroscopy 

(IR, BIORAD FTS 6000 FTIR). The thermal stability of K2TP was estimated by TG-

DSC analyzer (NETZSCH, STA 449 F3) at a heating rate of 5 oC min-1 from 25 to 

800 oC in air. Besides, X-ray photoelectron spectroscopy (XPS, Perkin Elmer PHI 

Electronic Supplementary Material (ESI) for Energy & Environmental Science.
This journal is © The Royal Society of Chemistry 2017



2

1600 ESCA system) was used to characterize the intermediates at different discharge 

and charge states.

Electrochemical Tests: CR2032 coin cells, which were assembled in an Ar-filled 

glove box (O2 ≤5 ppm, H2O ≤ 2 ppm), were used to investigate electrochemical 

performance of K2TP. Before preparing the working electrode, K2TP and super P 

(60:30) were ball-milled in a planetary ball mill at 300 rpm for 1 h to reduce the size 

of K2TP and increase the contact between K2TP and conductive carbon. Then, the 

above mixture was mixed with 10% polyvinylidene fluoride (PVdF) in N-methyl-2-

pyrrolidone (NMP). The obtained slurry was pasted onto a Cu foil and then dried in a 

vacuum oven at 110 °C for 8 h. The mass loading of the active material is 1.2-1.6 mg 

cm-2. The potassium metal was employed as counter electrode and reference electrode. 

Glassy-fiber filter was used as separator. The electrolyte was 1 M KPF6 in 1, 2-

dimethoxyethane (DME), 0.8 M KPF6 in ethylene carbonate/diethyl carbonate 

(EC/DEC, v/v = 1:1), 1 M KPF6 in ethylene carbonate/propylene carbonate (EC/PC, 

v/v = 1:1), and 1 M KPF6 in PC, respectively. 40 μL of electrolyte was used in each 

coin cell. Galvanostatic charge/discharge tests were carried out on Land CT2001A 

battery instrument in the voltage range of 0.1−2 V (vs. K/K+). The applied current 

densities are based on the mass of K2TP. Cyclic voltammetry was tested with Parstat 

263A electrochemical workstation (AMTECT Company) between 0.1 and 2 V. All 

the tests were performed at room temperature. The electrode was taken out from the 

cycled cell and then washed with DME to remove the residual electrolyte in an argon-

filled glove box to conduct IR and XPS tests.
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Computational Method: All the calculations were implemented by Gaussian 09 

Software.[S1] The structure optimizations were relaxed at the B3LYP[S2,S3] level with 

the 6-31+G (d,p) basis set. The HOMO plots of K2TP with two negative charge was 

visualized by Multiwfn.[S4]

Table S1. Refined structural parameters of K2TP by the Rietveld method.a

atom site occ. x y z
K1 4e 1 0.61022 0.20362 0.16110
O1 4e 1 0.35191 0.18530 0.16424
O2 4e 1 0.32623 0.30002 -0.03283
C1 4e 1 0.13570 0.39816 0.02578
C2 4e 1 0.07864 0.35423 0.11444
C6 4e 1 0.05476 0.54573 -0.08945
C7 4e 1 0.28199 0.28534 0.05386

H2A 4e 1 0.13110 0.25709 0.19183
H6A 4e 1 0.09123 0.57798 -0.15012

a Monoclinic, space group P21/c, a = 10.566, b = 3.950, c = 11.546, β = 113.04o, 
and V = 443.48 Å3.

Fig. S1 SEM images of (a) K2TP and (b) K2TP/SP.
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Fig. S2 Galvanostatic discharge/charge profiles of Super P at 50 mA g-1.

Fig. S3 Charge-discharge curves of K2TP at different current densities.
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Fig. S4 (a) The cycle stability of bulk K2TP and (b) the selected 10th charge-
discharge curves of bulk K2TP and K2TP /SP at 200 mA g-1.
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Fig. S5 (a) Charge-discharge curves of the selected cycles and (b) cycle stability at 
500 mA g-1.
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Fig. S6 Charge-discharge curves of the selected cycles at 1000 mA g-1.
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Fig. S7 Electrochemical performance of K2TP at a current density of 50 mA g-1 in 
different electrolytes. (a, b) 0.8 M KPF6/EC/DEC (1:1); (c, d) 1 M KPF6/EC/PC (1:1); 
(e, f) 1 M KPF6/PC.

Fig. S8 High-resolution TEM images of the cycled electrodes in (a) DME- and (b) 
PC-based electrolyte.



9

Fig. S9 EIS plots of K2TP (a) at open-circuit voltage and (b) after 3 cycles.

Fig. S10 Contact angles of the electrolytes on the K2TP electrode.



10

Fig. S11 SEM images of K2TP electrodes (a, e) before cycling and after 50 cycles at 
50 mA g-1 in (b, f) EC/DEC-based electrolyte, (c, g) EC/PC-based electrolyte, and (d, 
h) PC-based electrolyte.

Randles-Sevcik equation:

                                     
𝑖𝑝= (2.69 × 105)𝑛3/2𝐴𝐷1/2

𝐾+
𝐶
𝐾+

𝜈1/2

(1)

Where ip is the peak current (A), n is the charge-transfer number, A is the contact area 

between electrode and electrolyte, DK
+ is the diffusion coefficient of K+ (cm2 s-1), CK

+ 

is the concentration of K+ in the electrode material, ν is the scan rate (V s-1).

Fig. S12 Comparison of (a) C1s, (b) O1s, and (c) F1s spectra of the pristine electrode 
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and after the first cycle in the DME- and carbonate-based electrolytes.

Fig. S13 Elemental mappings of the cycled electrodes in (a-c) DME- and (d-f) PC-
based electrolyte.
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Fig. S14 (a) Charge-discharge curves of the selected cycles and (b) the cycling 
performance of K2(CO)6/K2TP full cell with excessive K2(CO)6 at 50 mA g-1.

Fig. S15 Galvanostatic discharge/charge profiles of K2C6O6 at 50 mA g-1.
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Table S2. Electrochemical performance comparison of some reported anode materials 
of KIBs.

Samples
Cyclability (capacity retention, compared with 

the 3rd cycle)
Rate performance Ref.

K2TP

229 mAh g-1 at 200 mA g-1, 100 cycles (91.2%)

202 mAh g-1 at 500 mA g-1, 100 cycles (91.8%)

194 mAh g-1 at 1000 mA g-1, 500 cycles (94.6%)

261 mAh g-1 at 50 mA g-1

249 mAh g-1 at 100 mA g-1
This work

Hard Carbon
216 mAh g-1 at 27.9 mA g-1, 100 cycles (83%)

240 mAh g-1 at 55.8 mA g-1

229 mAh g-1 at 140 mA g-1

136 mAh g-1 at 1395 mA g-1

4

 3,4,9,10-

perylene–

tetracarboxylicac

id–dianhydride

160 mAh g-1 at 10 mA g-1, 35 cycles (45.7%) 5

Sn-C 105 mAh g-1 at 25 mA g-1, 30 cycles (63.6%) 9

Graphite 100 mAh g-1 at 140 mA g-1, 50 cycles (50.8%)

234 mAh g-1 at 56 mA g-1

172 mAh g-1 at 140 mA g-1

80 mAh g-1 at 279 mA g-1

11

K2Ti8O17 110.7 mAh g-1 at 20 mA g-1, 50 cycles (82%)

110 mAh g-1 at 40 mA g-1

83 mAh g-1 at 100 mA g-1

79 mAh g-1 at 150 mA g-1

70 mAh g-1 at 200 mA g-1

50 mAh g-1 at 400 mA g-1

44.2 mAh g-1 at 500 mA g-1

23

Carbon 

Nanofibers
80 mAh g-1 at 50 mA g-1, 20 cycles (40%) 24

Graphite
150 mAh g-1 at 50 mA g-1

90 mAh g-1 at 200 mA g-1
25

RGO films 120 mAh g-1 at 10 mA g-1, 100 cycles (80%)

200 mAh g-1 at 5 mA g-1

98 mAh g-1 at 50 mA g-1

60 mAh g-1 at 100 mA g-1

25
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