Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2017

Supplementary materials

Carbon quantum dots as a visible light sensitizer to significantly boost the solar water splitting performance of bismuth vanadate photoanodes

Kai-Hang Ye^{a, c}, Zilong Wang^{b, c}, Jiuwang Gu^b, Shuang Xiao^c, Yufei Yuan^b, Yi Zhu^a, Yuanming Zhang^a*, Wenjie Mai^{a,b, d}* and Shihe Yang^c*

^aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, China.

^b Department of Physics and Siyuan Laboratory, Jinan University, Guangzhou, Guangdong 510632, China.

^c Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

^d Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China.

*Contact information for corresponding authors:

^a Yuanming Zhang (E-mail: <u>tzhangym@jnu.edu.cn</u>),

^{b, d} Wenjie Mai (E-mail: wenjiemai@gmail.com),

^c Shihe Yang (E-mail: <u>chsyang@ust.hk</u>).

The supplementary materials include:

Calculations

Figure S1 ~ Figure S12

Table S1

Movie S1

Reference list

Calculations

The conversion between potentials vs. Ag/AgCl and those vs. RHE is performed using the equation below:

E (vs. RHE) = E (vs. Ag/AgCl) +
$$E_{Ag/AgCl}$$
 (reference) +0.0591 V × pH

$$(E_{Ag/AgCl} \text{ (reference)} = 0.1976 \text{ V vs. NHE at } 25 \text{ °C})^{-1}$$

Incident-photon-to-current conversion efficiency (IPCE) can be expressed as:

$$IPCE = (1240 \times I) / (\lambda \times J_{light}), ^{2}$$

Where *I* is the photocurrent density, λ is the incident light wavelength, and J_{light} is the measured irradiance.

Light harvesting efficiency (LHE) can be expressed as:

LHE = 1 -
$$10^{-A_{(\lambda)}}$$
, 1

where $A_{(\lambda)}$ is absorbance, λ is wavelength.

The maximum photocurrent density (J_{max}) :

Firstly, the National Renewable Energy Laboratory (NREL) reference solar spectral irradiance at AM 1.5G (radiation energy $(W \cdot m^{-2} \cdot nm^{-1})$ vs. wavelength (nm))³was converted to the solar energy spectrum in terms of number of photons (s⁻¹ \cdot m⁻² \cdot nm⁻¹) vs. wavelength (nm). Then, the number of photons above the photo-active range of the BiVO₄ shown in this study (300 nm ~ 500 nm) and CQDs/BiVO₄ (300 nm ~ 800 nm) was calculated using a trapezoidal integration (in 10 nm increments) of the spectrum and was converted to the current density (mA·cm⁻²).¹

Photocurrent assuming 100% APCE (J_{abs}) can be expressed as:

$$J_{\rm abs} = J_{\rm max} \times LHE.$$

The practical water oxidation photocurrent (J_{PEC}) can be expressed as:

$$J_{\rm PEC} \approx J_{\rm abs} \times \Phi_{\rm sep} \times \Phi_{\rm OX}$$
.^{1, 2, 4}

The electron-hole separation yield (Φ_{sep}) can be expressed as:

$$\Phi_{\rm sep} = J_{\rm HS} / J_{\rm abs}, \, 4$$

where J_{HS} is the photocurrent density of sample with Na₂SO₃ hole scavenger.

Yield of the surface reaching holes or be named transfer efficiency (Φ_{OX}) can be expressed as:

$$\Phi_{\rm OX} = (J_{\rm PEC}) / (J_{\rm HS}).^{1, 4}$$

Applied bias photo-to-current efficiency (ABPE) can be expressed as:

$$ABPE = [J_{PEC} \times (1.23 - V_{app})] / P_{light, 1}$$

Where J_{PEC} is the photocurrent density of samples, V_{app} is the applied external potential vs. RHE and P_{light} is the power density of the illumination (100mWcm²).

Figure S1.TEM, photos and PL emission spectra of CQDs at the excitation

wavelength from 340 to 500 nm.

Figure S2.Schematic diagrams for the growth process of CQDs/BiVO₄ photoanodes,

SEM images of (b) BiOI, (c) BiVO₄ and (d) CQDs/BiVO₄.

Figure S3. UV-vis diffuse absorption spectra of different samples increased with

longer adsorption CQDs time.

Figure S4. (a)XRD patterns of FTO, BiVO₄, 2h-CQDs/BiVO₄, 4h-CQDs/BiVO₄ and

8h-CQDs/BiVO₄; (b) *J–V* curves ofBiVO₄, 2h-CQDs/BiVO₄, 4h-CQDs/BiVO₄ and 8h-CQDs/BiVO₄recorded at a scan rate of 25mVs⁻¹under AM 1.5G irradiation in potassium phosphate solution with Na₂SO₃ as hole scavenger (pH 7).

Figure S5. HRTEM images of the 4h-CQDs/BiVO₄ and 8h-CQDs/BiVO₄.

Figure S6. Optical characterizations. (a) UV–vis absorption spectra(derived from diffuse reflectance spectra), photographs (bottom left inset) and Tauc plots (top right inset) of the BiVO₄ and CQDs/BiVO₄ photoanodes; (b) Spectra of the solar irradiance of AM 1.5G (ASTM G173-03) and those weighted by the LHE spectra of the BiVO₄ and CQDs/BiVO₄ photoanodes (300~800 nm). The photocurrent J_{abs} given for each curve was calculated from integration of the corresponding spectrum.

Figure S7. LHE of BiVO₄ and CQDs/BiVO₄ photoanodes.

Figure S8. Open-circuit voltage curves of sample after photoelectrodeposited OEC layer under AM 1.5G irradiation in potassium phosphate solution without hole

scavenger (pH 7).

Figure S9. TEM images of OEC layer and CQDs/BiVO₄.

Figure S10. High-resolution XPS spectra of Bi_{4f} , Fe_{2p} , Ni_{2p} and C_{1s} .

Figure S11. The electron-hole separation yield of CQDs/BiVO₄ and NFCB

photoanodes.

Figure S12. *J*–*V* curves of the NFCB sample, Co-Pi/CQDs/BiVO₄ sample, and $CoO_x/CQDs/BiVO_4$ sample recorded at a scan rate of $25mVs^{-1}$ under AM 1.5G irradiation in potassium phosphate electrolyte with no hole scavenger (pH 7)

Figure S13. APCE and IPCE spectra collected at the incident wavelength range from 400 to 800nm at 1.23V vs. RHE in potassium phosphate electrolyte without hole

scavenger (pH 7)

Figure S14. Fluorescence quenching test of CQDs solution with different quality of

BiVO₄.

Figure S15. Operational stability of the CQDs/BiVO₄ photoanode. (Top)
Chronoamperometry (*i*-*t*) curves of CQDs/BiVO₄ photoanode collected at 0.6 V vs.
RHE under AM 1.5G illumination in potassium phosphate electrolyte without hole scavenger (pH 7). (Bottom) H₂and O₂evolution of NFCB photoanode at 0.6 V vs.

RHE; dashed curves indicate the H2and O2evolution with about 75% Faraday

efficiency.

Figure S16. C_{1s} High-resolution XPS spectra of NFCB and CQDs/BiVO₄ after 10 h

reaction.

Figure. S17. *J-V* curves of the NFCB sample, CQDs/BiVO₄ sample, and BiVO₄ sample recorded at a scan rate of 25 mVs⁻¹ in potassium phosphate electrolyte with no hole scavenger (pH 7)

Figure. S18. Operational stability of the NFCB photoanode. Chronoamperometry (i-t) curves of CQDs/BiVO₄photoanodecollected at 1.23 V vs. RHE under AM 1.5G illumination in potassium phosphate electrolyte without hole scavenger (pH 7).

LCS 100 94011A)

Move S1. The water splitting device in potassium phosphate solution without hole scavenger (pH 7) (RT) at 0.6V vs. RHE under AM 1.5G irradiation (100 mW cm⁻²).

solar water splitting.			
Photoanodes	IPCE range of visible light	Photocurrent at 1.23 V vs. RHE	Ref.
NiOOH/NiO/CoO _x /BiVO ₄	420 nm-520 nm	3.5 mA/cm ²	5
Co ₃ O ₄ /BiVO ₄	420 nm-520 nm	2.71 mA/cm ²	6
BiOI/BiVO ₄	420 nm-590 nm	3.27 mA/cm ²	2
NiOOH/FeOOH (W,Mo)-BiVO ₄ /WO ₃	420 nm-500 nm	5.35 mA/cm ²	7
NiOOH/FeOOH/BiVO ₄	420 nm-520 nm	~4.4 mA/cm ²	1
NiOOH/FeOOH/N-BiVO ₄	420 nm-550 nm	$\sim 5 \text{ mA/cm}^2$	8
BiVO ₄ /SnO ₂ /WO ₃	420 nm-520 nm	2.5 mA/cm ²	9
CQDs/BiVO ₄	-	$\sim 2.0 \text{ mA/cm}^2$	10
CQDs/TiO ₂	420 nm-890	$\sim 1 \text{ mA/cm}^2$	11
CoO _x /CQDs/BiVO ₄	420 nm-790 nm	3.65 mA/cm ²	This work
Co-Pi/CQDs/BiVO ₄	420 nm-790 nm	4.64 mA/cm ²	This work
NiOOH/FeOOH/CQDs/BiVO ₄	420 nm-790 nm	5.99 mA/cm ²	This work

Table S1. Summary of recent key advances in BiVO4-based photoanodes for PEC solar water splitting.

References

- 1. T. W. Kim and K. S. Choi, *Science*, 2014, **343**, 990-994.
- K. H. Ye, Z. Chai, J. Gu, X. Yu, C. Zhao, Y. Zhang and W. Mai, *Nano Energy*, 2015, 18, 222-231.
- 3. A. Standard, *Annual book of ASTM standards*, 2008, **12**.
- F. F. Abdi, L. Han, A. H. Smets, M. Zeman, B. Dam and d. K. R. Van, *Nat. Commun.*, 2013, 4, 2195-2195.
- 5. M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi and M. Nakabayashi, *J. Am. Chem. Soc.*, 2015, **137**, 5053-5060.
- X. X. Chang, T. Wang, P. Zhang, J. J. Zhang, A. Li and J. L. Gong, J. Am. Chem. Soc., 2015, 137, 8356-8359.
- X. Shi, I. Y. Choi, Z. Kan, J. Kwon, Y. K. Dong, J. K. Lee, H. O. Sang, J. K. Kim and J. H. Park, *Nat. Commun.*, 2014, 5, 4775-4775.
- 8. K. T. Woo, P. Yuan, G. A. Galli and C. Kyoung-Shin, Nat. Commun., 2015, 6, 8769-8778.
- 9. R. Saito, Y. Miseki and K. Sayama, Chem. Commun., 2012, 48, 3833-3835.

- 10. F. Nan, Z. Kang, J. Wang, M. Shen and L. Fang, *Appl. Phys. Lett.*, 2015, **106**, 37.
- 11. X. Zhang, F. Wang, H. Huang, H. Li, X. Han, Y. Liu and Z. Kang, *Nanoscale*, 2013, **5**, 2274-2278.