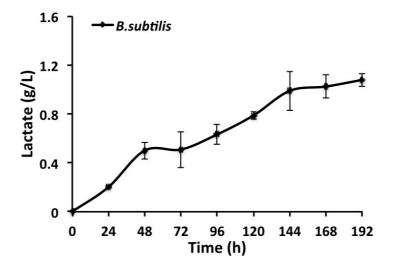
Supporting Information

A three-species microbial consortium for power generation

Yue Liu,^{abc} Mingzhu Ding,^{ab} Wei Ling,^{abc} Yun Yang,^d Xiao Zhou,^{ab} Bingzhi Li,^{abc} Tao Chen,^{ab} Yong Nie,^e Miaoxiao Wang,^e Boxuan Zeng,^{ab} Xia Li,^{ab} Hong Liu,^{ab} Baode Sun,^{abc} Heming Xu,^{abc} Jiamei Zhang,^{abc} Yi Jiao,^{abc} Yanan Hou,^{abc} Hui Yang,^{abc} Sijia Xiao,^{abc} Qucheng Lin,^{abc} Xinzi He,^{abc} Wenjie Liao,^{abc} Zeqi Jin,^{abc} Yufei Xie,^{abc} Bofeng Zhang,^{abc} Tianyu Li,^{abc} Xi Lu,^{abc} Jiabei Li,^{abc} Fan Zhang,^{abc} Xiaolei Wu,^e Hao Song,^{*ab} Yingjin Yuan,^{*abc}

^a Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China

 ^b SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China


^c Team TJU for the International Genetically Engineered Machine Competition (iGEM), Tianjin,
300072, China

^d School of Chemistry and Environment, Beihang University, Beijing, 100191, China

Department of Energy and Resources Engineering, College of Engineering, Peking University,
Beijing, 10087, China

*To whom correspondence may be addressed. E-mail: <u>yjyuan@tju.edu.cn</u> or <u>hsong@tju.edu.cn</u>

Supporting Figures & Figure captions

Figure S1. Functional redundancy of *B. subtilis* **for lactate production.** In anaerobic condition, *B. subtilis* could convert glucose to lactate and produced 1.1 g/L lactate in 192 h. However, the rate was much slower than *E. coli*, which produced 1.3 g/L lactate in 48 h at the same cultural condition. In the absence of *E. coli*, *B. subtilis* had the complementary role to provide carbon source that maintained the function of the three-species consortium.

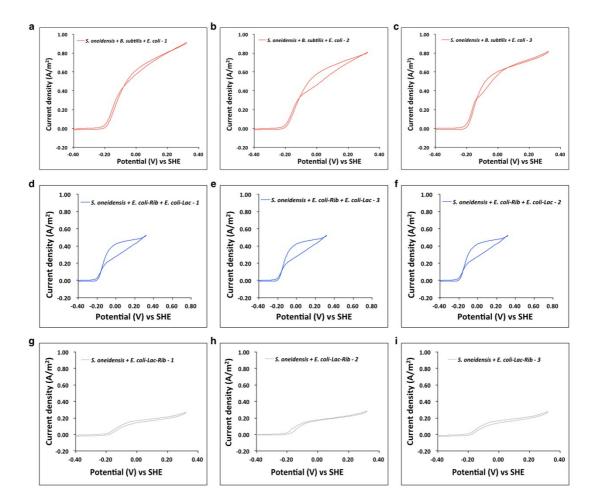


Figure S2. Turnover cyclic voltammetry (CV) of synthetic microbial consortia. Turnover cyclic voltammetry (CV) at a low scan rate of 1 mV/s. (a - c) Replicative experimental results of *S. oneidensis* + *B. subtilis* + *E. coli*-Lac consortium; (d - f) Replicative experimental results of CV of *S. oneidensis* + *E. coli*-Rib + *E. coli*-Lac consortium; (g - i) Replicative experimental results of *S. oneidensis* + *E. coli*-Lac-Rib consortium.

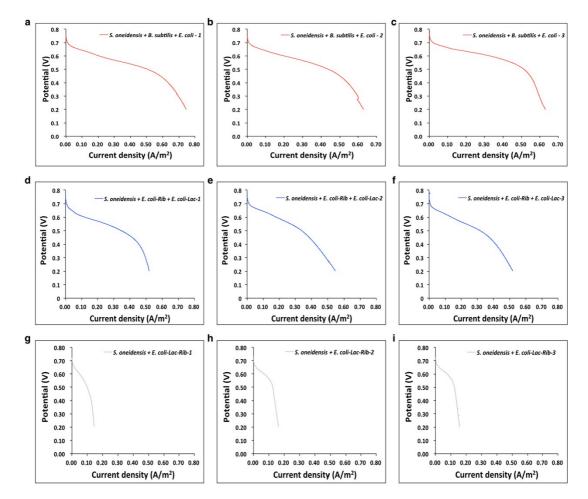


Figure S3. Linear sweep voltammetry (LSV) of synthetic microbial consortia. Polarization curves got by linear sweep voltammetry (LSV) with a low scan rate of 0.1 mV/s. (a - c) Replicative experimental results of *S. oneidensis* + *B. subtilis* + *E. coli*-Lac consortium; (d - f) Replicative experimental results of CV of *S. oneidensis* + *E. coli*-Lac consortium; (g - i) Replicative experimental results of *S. oneidensis* + *E. coli*-Lac consortium; (g - i) Replicative experimental results of *S. oneidensis* + *E. coli*-Lac-Rib consortium.

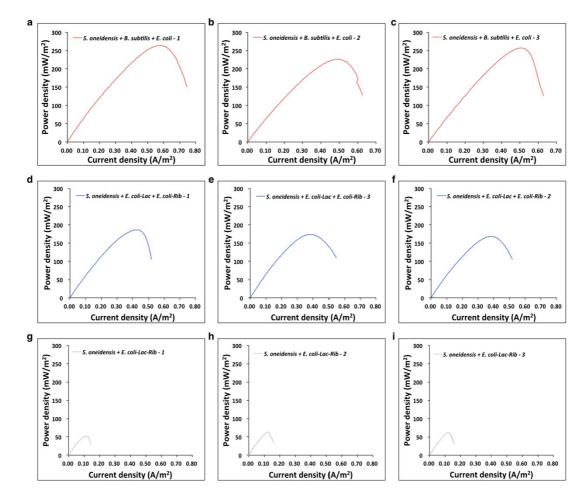


Figure S4. Power density output curves of synthetic microbial consortia. (a - c) Replicative experimental results of *S. oneidensis* + *B. subtilis* + *E. coli*-Lac consortium; (d - f) Replicative experimental results of CV of *S. oneidensis* + *E. coli*-Rib + *E. coli*-Lac consortium; (g - i) Replicative experimental results of *S. oneidensis* + *E. coli*-Lac-Rib consortium.