Electronic supplementary information

All-wood, Low Tortuosity, Aqueous, Biodegradable Supercapacitors with Ultra-High Capacitance

Chaoji Chen^{1,2,†}, Ying Zhang^{2,†}, Yiju Li², Jiaqi Dai², Jianwei Song², Yonggang Yao², Yunhui

Gong², Iain Kierzewski², Jia Xie^{1,*}, Liangbing Hu^{2,*}

Method S1: Calculation details

a. Single Electrode in the three-electrode cell configuration

The areal and specific capacitances of the electrodes are all calculated from their GCD profiles by the following equations:

$$C_{(areal)} = \frac{I * \Delta t}{S * \Delta V}$$
$$C_{(specific)} = \frac{I * \Delta t}{m * \Delta V}$$

where I is the discharge current, Δt is the discharge time, S is the effective area of the electrode, ΔV is the potential window of the discharge process, and m is the mass of the electrode.

b. All-wood-structured ASC Device

The areal and specific capacitances of the ASC device are calculated from the GCD profiles according to the following equation:

$$C_{(areal)} = \frac{I * \Delta t}{S * \Delta V}$$

where I is the discharge current, Δt is the discharge time, S is the area of the electrode, ΔV is the voltage difference from the beginning to the end of an individual discharge cycle and m is the total mass of the negative and positive electrode materials.

Calculation details of the energy (E) and power densities (P):

$$E = 0.5 * C * \Delta V^2$$
$$P = E/\Delta t$$

where C is the areal or specific capacitance of the ASC device, Δt and ΔV are the discharge time and potential difference of an individual discharge cycle.

Figure S1. SEM images of the nature wood: (a) cross-section-view image showing the channels, (b) top-view image, (c) cross-section-view image showing both the top and cross section of the nature wood.

Figure S2. Raman spectrum of the activated wood carbon. The intensity ratio of the D and G peaks (I_D/I_G) is 1.1.

Figure S3. TEM images of the activated wood carbon.

Figure S4. Charge-discharge profiles of the AWC anode of the initial 15 cycles at 5 mA cm⁻².

Figure S5. XRD patterns of the wood carbon and MnO₂/wood carbon composite.

Figure S6. XPS spectra for the MnO₂/WC composite: (a) survey XPS and (b) high-resolution Mn 2p spectra. As reported, the Mn oxidation state can be determined by the binding energy width (ΔE) between the separated Mn 2p peaks caused by multiplet splitting.[1] The ΔE data of 11.7 eV for the Mn 2p indicates that the as-grown manganese oxide is MnO₂.

Ref [1]. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Advanced Functional Materials 2011, 21, 2366-2375.

Figure S7. SEM images of the wood carbon.

Figure S8. The charge-discharge profiles of the $MnO_2@WC$ cathode at 10 mA cm⁻² in the initial 10 cycles.

Figure S9. SEM images of the WC-MnO₂ products obtained with different electrodeposition times: (a,b) 1h, (c,d) 2h, (e,f) 5 h and (g,h) 10 h.

Figure S10. Areal mass loadings of MnO₂ in the wood carbon/MnO₂ products obtained with different electrodeposition times.

Figure S11. CV curves of the WC-MnO₂ products obtained with different electrodeposition times at a scan rate of 5 mV s⁻¹.

Figure S12. Rate performances of the MnO₂/wood carbon electrodes with different areal mass loadings of MnO₂ (1h: 8.4 mg/cm², 2h: 12.5 mg/cm², 5h: 16 mg/cm²).

Figure S13. Areal energy and power densities of the ACS device, including masses of all

components.

Figure S14. Specific energy and power densities of the ACS device calculated based on the total mass of the activated wood carbon anode, MnO₂@WC cathode electrode materials and wood membrane separator.

Figure S15. Volumetric capacitance, energy density and thickness of the all-wood-structured ASC (AWS ASC) compared with the previous reported electrode materials (H-TiO₂@MnO₂//H-TiO₂@C¹⁴, ZnO@C@MnO₂⁷, ZnO@MnO₂//RGO², PPy@MnO₂//AC¹¹ and MnO₂@rGO/CNT//rGO/CNT¹²).

Material name	Volumetric	Volumetric	Cycling	Calculation	Sources
	capacitance	energy density	stability	method	
WO _{3-x} /MoO _{3-x} //PANI/carbon	0.216 F/cm ³	1.9 Wh/L	10000	Electrode level	Ref. [1]
ZnO@MnO2//RGO	0.52 F/cm ³	0.234 Wh/L	5000	Device level	Ref. [2]
$Co_9S_8/\!/Co_3O_4@RuO_2$	4.28 F/cm ³	1.21 Wh/L	2000	Device level	Ref. [3]
VO _x //VN	1.35 F/cm ³	0.61 Wh/L	-	Device level	Ref. [4]
TiN	0.33 F/cm ³	0.05 Wh/L	15000	Device level	Ref. [5]
TiO ₂ @C	0.125 F/cm ³	0.011 Wh/L	5000	Device level	Ref. [6]
ZnO@C@MnO2	0.325 F/cm ³	0.04 Wh/L	10000	Device level	Ref. [7]
VN/CNT	7.9 F/cm3	0.54 Wh/L	10000	Device level	Ref. [8]

Table S1: Volumetric capacitance and energy density comparison of MnO₂-based and some carbon-/metal oxide/nitrite-based supercapacitors.

Carbon Nanotube Fiber	13.5 F/cm3	1.32 Wh/L	10000	Electrode level	Ref. [9]
Mesoporous carbon	17.4 F/cm3	6.2 Wh/L	5000	Electrode level	Ref. [10]
Polypyrrole@MnO2//AC	19.3 F/cm3	8.69 Wh/L	1000	Electrode level	Ref. [11]
MnO ₂ -coated	11 F/cm3	5 Wh/L	10000	Electrode level	Ref. [12]
rGO/SWCNT//rGO/SWCNT					
Carbon/MnO ₂ fiber	2.5 F/cm3	0.12 Wh/L	10000	Device level	Ref. [13]
H-TiO2@MnO2//H-TiO2@C	0.7 F/cm3	0.3 Wh/L	5000	Device level	Ref. [14]
Bamboo-like carbon	2.1 F/cm3	0.24 Wh/L	5000	Device level	Ref. [15]
All-wood-structured ASC	14.4 F/cm3	6.4 Wh/L	10000	Device level	This work

Refs:

[1] X. Xiao, T. Ding, L. Yuan, Y. Shen, Q. Zhong, X. Zhang, Y. Cao, B. Hu, T. Zhai, L. Gong, J. Chen, Y. Tong, J. Zhou and Z.

- L. Wang, Adv. Energy Mater., 2012, 2, 1328
- [2] W. Zilong, Z. Zhu, J. Qiu and S. Yang, J. Mater. Chem. C, 2014, 2, 1331

[3] J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen and G. Shen, ACS Nano, 2013, 7, 5453

[4] X. Lu, M.-H. Yu, T. Zhai, G. Wang, S. Xie, T. Lu, C. Liang, Y.-X. Tong and Y. Li, Nano Lett., 2013, 2628

[5] X. H. Lu, G. M. Wang, T. Zhai, M. H. Yu, S. L. Xie, Y. C. Ling, C. L. Liang, Y. X. Tong and Y. Li, *Nano Lett.*, 2012, 12, 5376

[6] H. Zheng, T. Zhai, M. Yu, S. Xie, C. Liang, W. Zhao, S. C. I. Wang, Z. Zhang and X. Lu, J. Mater. Chem. C, 2013, 1, 225

[7] P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C. P. Wong and Z. L. Wang, *ACS Nano*, 2013, 7, 2617

[8] X. Xiao, X. Peng, H. Jin, T. Li, C. Zhang, B. Gao, B. Hu, K. Huo and J. Zhou, Adv. Mater., 2013, 25, 5091

[9] Xu P, Gu T, Cao Z, et al. Adv. Energy Mater. 2014, 4, 1300759

[10] Wang Q, Yan J, Wei T, et al. Carbon, 2013, 60, 481-487

[11] Tao J, Liu N, Li L, et al. Nanoscale, 2014, 6, 2922-2928

[12] Yu, D., Goh, K., Zhang, Q., Wei, L., Wang, H., Jiang, W. and Chen, Y. Adv. Mater., 2014, 26, 6790-6797

[13] X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, L. Gong, W. C. Yen, W. Mai, J.

Chen, K. Huo, Y. L. Chueh, Z. L. Wang and J. Zhou, ACS Nano, 2012, 6, 9200

[14] X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong and Y. Li, Adv. Mater., 2013, 25, 267

[15] Sun Y, Sills R B, Hu X, et al. Nano letters, 2015, 15, 3899-3906.

Figure S16. Structure and morphology characterizations of the $TiO_2@WC$ composite. (a) cross-section-view, (b) top-view, (c) magnified top-view and (d) magnified cross-section-view SEM images. (e) Element mapping images of O, Ti, C and their integration.

Figure S17. Structure and morphology characterizations of the LTO@WC composite. (a) cross-section-view, (b) top-view, (c) magnified top-view and (d) magnified cross-section-view SEM images. (e) Element mapping images of O, Ti, C and their integration.

Figure S18. Structure and morphology characterizations of the NMC@WC composite. (a) topview, (b) magnified top-view and (c) cross-section-view SEM images. (d) Element mapping images of Ni, Mn, Co, O, C and their integration.

Figure S19. Structure and morphology characterizations of the MoS₂@WC composite. (a) crosssection-view, (b) top-view, (c) magnified top-view and (d) magnified cross-section-view SEM images. (e) Element mapping images of S, Mo, C and their integration.

Figure S20. Structure and morphology characterizations of the $TiS_2@WC$ composite. (a) crosssection-view, (b) top-view, (c) magnified top-view and (d) magnified cross-section-view SEM images. (e) Element mapping images of S, Ti, C and their integration.

The universality of our approach lies in these aspects:

- Universal electroactive materials (metal sulfides, oxides and so on);
- Universal synthesis method (electrodeposition, hydrothermal, vacuum-assisted infiltration, *et al.*);
- Universal functions (supercapacitor, rechargeable batteries, electrocatalysis, photocatalysis, *et al.*).

Material name	Electroactive material	Synthesis method	Function
MnO ₂ @WC	MnO ₂	Electrodeposition	SCs
TiO ₂ @WC	TiO ₂	Hydrothermal	LIBs/SIBs (anode)/Photocatalysis
LTO@WC	LTO	Vacuum-assisted infiltration	LIBs/SIBs (anode)
NMC@WC	NMC	Vacuum-assisted infiltration	LIBs (cathode)
TiS ₂ @WC	TiS ₂	Vacuum-assisted infiltration	LIBs (anode)/SCs
MoS ₂ @WC	MoS_2	Vacuum-assisted infiltration	LIBs/SIBs (anode)/SCs/Electrocatalysis

 Table S2. Summaries of the universality of the wood-structure-inspired materials design.