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Method S1: Calculation details

a. Single Electrode in the three-electrode cell configuration

The areal and specific capacitances of the electrodes are all calculated from their GCD profiles 

by the following equations:

𝐶(𝑎𝑟𝑒𝑎𝑙)=
𝐼 ∗ ∆𝑡
𝑆 ∗ ∆𝑉

𝐶(𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐) =
𝐼 ∗ ∆𝑡
𝑚 ∗ ∆𝑉

where I is the discharge current, ∆t is the discharge time, S is the effective area of the electrode, 

∆V is the potential window of the discharge process, and m is the mass of the electrode.

b. All-wood-structured ASC Device

The areal and specific capacitances of the ASC device are calculated from the GCD profiles 

according to the following equation: 

𝐶(𝑎𝑟𝑒𝑎𝑙)=
𝐼 ∗ ∆𝑡
𝑆 ∗ ∆𝑉
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where I is the discharge current, ∆t is the discharge time, S is the area of the electrode, ∆V is the 

voltage difference from the beginning to the end of an individual discharge cycle and m is the 

total mass of the negative and positive electrode materials.

Calculation details of the energy (E) and power densities (P):

E = 0.5*C* ∆V2

P = E/∆t

where C is the areal or specific capacitance of the ASC device, ∆t and ∆V are the discharge time 

and potential difference of an individual discharge cycle.
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Figure S1. SEM images of the nature wood: (a) cross-section-view image showing the channels, 

(b) top-view image, (c) cross-section-view image showing both the top and cross section of the 

nature wood. 
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Figure S2. Raman spectrum of the activated wood carbon. The intensity ratio of the D and G 

peaks (ID/IG) is 1.1.
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Figure S3. TEM images of the activated wood carbon.
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Figure S4. Charge-discharge profiles of the AWC anode of the initial 15 cycles at 5 mA cm2.
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Figure S5. XRD patterns of the wood carbon and MnO2/wood carbon composite. 
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Figure S6. XPS spectra for the MnO2/WC composite: (a) survey XPS and (b) high-resolution 

Mn 2p spectra. As reported, the Mn oxidation state can be determined by the binding energy 

width (∆E) between the separated Mn 2p peaks caused by multiplet splitting.[1] The ∆E data of 

11.7 eV for the Mn 2p indicates that the as-grown manganese oxide is MnO2.

Ref [1]. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Advanced Functional Materials 2011, 21, 2366-2375.
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Figure S7. SEM images of the wood carbon. 
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Figure S8. The charge-discharge profiles of the MnO2@WC cathode at 10 mA cm2 in the initial 

10 cycles. 
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Figure S9. SEM images of the WC-MnO2 products obtained with different electrodeposition 

times: (a,b) 1h, (c,d) 2h, (e,f) 5 h and (g,h) 10 h.
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Figure S10. Areal mass loadings of MnO2 in the wood carbon/MnO2 products obtained with 

different electrodeposition times. 
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Figure S11. CV curves of the WC-MnO2 products obtained with different electrodeposition 

times at a scan rate of 5 mV s1. 
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Figure S12. Rate performances of the MnO2/wood carbon electrodes with different areal mass 

loadings of MnO2 (1h: 8.4 mg/cm2, 2h: 12.5 mg/cm2, 5h: 16 mg/cm2).
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Figure S13. Areal energy and power densities of the ACS device, including masses of all 

components.
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Figure S14. Specific energy and power densities of the ACS device calculated based on the total 

mass of the activated wood carbon anode, MnO2@WC cathode electrode materials and wood 

membrane separator.
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Figure S15. Volumetric capacitance, energy density and thickness of the all-wood-structured 

ASC (AWS ASC) compared with the previous reported electrode materials (H-TiO2@MnO2//H-

TiO2@C14, ZnO@C@MnO2
7, ZnO@MnO2//RGO2, PPy@MnO2//AC11 and 

MnO2@rGO/CNT//rGO/CNT12).

Table S1: Volumetric capacitance and energy density comparison of MnO2-based and some 

carbon-/metal oxide/nitrite-based supercapacitors.

Material name Volumetric 

capacitance

Volumetric 

energy density

Cycling 

stability

Calculation 

method

Sources

WO3−x/MoO3−x//PANI/carbon 0.216 F/cm3 1.9 Wh/L 10000 Electrode level Ref. [1]

ZnO@MnO2//RGO 0.52 F/cm3 0.234 Wh/L 5000 Device level Ref. [2]

Co9S8//Co3O4@RuO2 4.28 F/cm3 1.21 Wh/L 2000 Device level Ref. [3]

VOx//VN 1.35 F/cm3 0.61 Wh/L - Device level Ref. [4]

TiN 0.33 F/cm3 0.05 Wh/L 15000 Device level Ref. [5]

TiO2@C 0.125 F/cm3 0.011 Wh/L 5000 Device level Ref. [6]

ZnO@C@MnO2 0.325 F/cm3 0.04 Wh/L 10000 Device level Ref. [7]

VN/CNT 7.9 F/cm3 0.54 Wh/L 10000 Device level Ref. [8]
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Carbon Nanotube Fiber 13.5 F/cm3 1.32 Wh/L 10000 Electrode level Ref. [9]

Mesoporous carbon 17.4 F/cm3 6.2 Wh/L 5000 Electrode level Ref. [10]

Polypyrrole@MnO2//AC 19.3 F/cm3 8.69 Wh/L 1000 Electrode level Ref. [11]

MnO2-coated 

rGO/SWCNT//rGO/SWCNT

11 F/cm3 5 Wh/L 10000 Electrode level Ref. [12]

Carbon/MnO2 fiber 2.5 F/cm3 0.12 Wh/L 10000 Device level Ref. [13]

H-TiO2@MnO2//H-TiO2@C 0.7 F/cm3 0.3 Wh/L 5000 Device level Ref. [14]

Bamboo-like carbon 2.1 F/cm3 0.24 Wh/L 5000 Device level Ref. [15]

All-wood-structured ASC 14.4 F/cm3 6.4 Wh/L 10000 Device level This work
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Figure S16. Structure and morphology characterizations of the TiO2@WC composite. (a) cross-

section-view, (b) top-view, (c) magnified top-view and (d) magnified cross-section-view SEM 

images. (e) Element mapping images of O, Ti, C and their integration.
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Figure S17. Structure and morphology characterizations of the LTO@WC composite. (a) cross-

section-view, (b) top-view, (c) magnified top-view and (d) magnified cross-section-view SEM 

images. (e) Element mapping images of O, Ti, C and their integration.
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Figure S18. Structure and morphology characterizations of the NMC@WC composite. (a) top-

view, (b) magnified top-view and (c) cross-section-view SEM images. (d) Element mapping 

images of Ni, Mn, Co, O, C and their integration.
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Figure S19. Structure and morphology characterizations of the MoS2@WC composite. (a) cross-

section-view, (b) top-view, (c) magnified top-view and (d) magnified cross-section-view SEM 

images. (e) Element mapping images of S, Mo, C and their integration.

22



Figure S20. Structure and morphology characterizations of the TiS2@WC composite. (a) cross-

section-view, (b) top-view, (c) magnified top-view and (d) magnified cross-section-view SEM 

images. (e) Element mapping images of S, Ti, C and their integration.
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The universality of our approach lies in these aspects:

 Universal electroactive materials (metal sulfides, oxides and so on);

 Universal synthesis method (electrodeposition, hydrothermal, vacuum-assisted 

infiltration, et al.);

 Universal functions (supercapacitor, rechargeable batteries, electrocatalysis, 

photocatalysis, et al.).

Table S2. Summaries of the universality of the wood-structure-inspired materials design.

Material name Electroactive 
material

Synthesis method Function

MnO2@WC MnO2 Electrodeposition SCs

TiO2@WC TiO2 Hydrothermal LIBs/SIBs (anode)/Photocatalysis

LTO@WC LTO Vacuum-assisted 
infiltration

LIBs/SIBs (anode)

NMC@WC NMC Vacuum-assisted 
infiltration

LIBs (cathode)

TiS2@WC TiS2 Vacuum-assisted 
infiltration

LIBs (anode)/SCs

MoS2@WC MoS2 Vacuum-assisted 
infiltration

LIBs/SIBs (anode)/SCs/Electrocatalysis
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