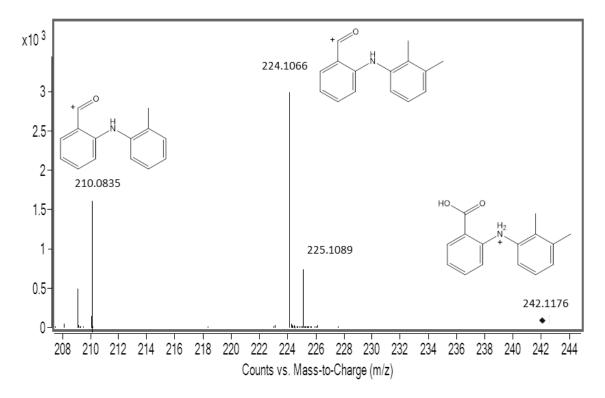
Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2016

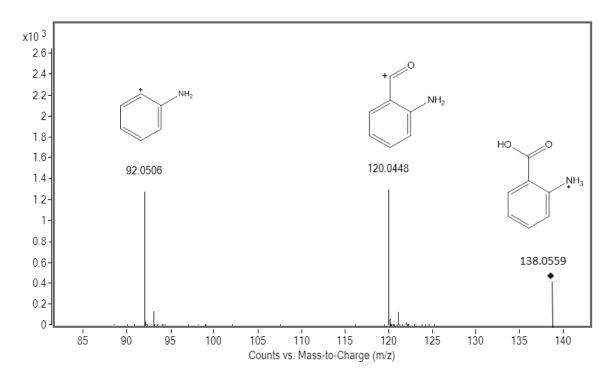
Electronic Supplementary Information


Aqueous chlorination of mefenamic acid: Kinetics, transformation byproducts and ecotoxicity assessment

Wan Nor Adira Wan Khalit^a, Kheng Soo Tay^{a,*}

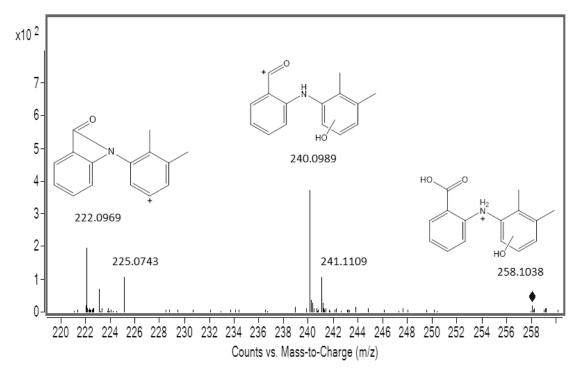
^aEnvironmental Research Group, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

*Tel: +603-79677022 ext 2145; Email: khengsoo@um.edu.my


a) Mfe-242

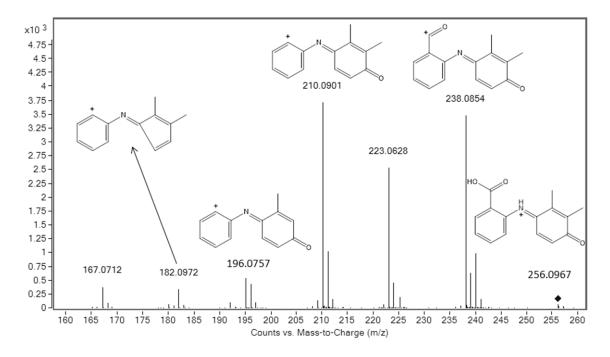
Measured	Calculated	Molecular	Error
$(\mathbf{M} + \mathbf{H})^+$	$(\mathbf{M} + \mathbf{H})^+$	formula	(ppm)
224.1066	224.1070	C ₁₅ H ₁₄ NO	1.75
210.0835	210.0913	$C_{14}H_{12}NO$	37.13

Fig. S1MS/MS spectrum for chlorination Mfe and its fragmentation by-products.


b) Mfe-138

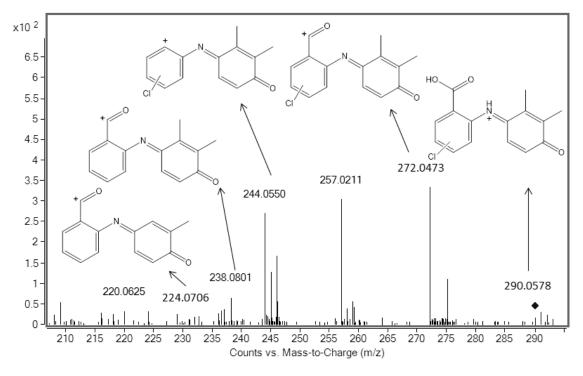
Measured	Calculated	Molecular formula	Error
$(\mathbf{M} + \mathbf{H})^+$	$(\mathbf{M}+\mathbf{H})^+$		(ppm)
120.0448	120.0444	C ₇ H ₆ NO	-3.8
92.0506	92.0495	C_6H_6N	-11.74

Fig. S1 (continued)


c) Mfe-258

Measured	Calculated	Molecular	Error (ppm)
$(M+H)^+$	$(\mathbf{M}+\mathbf{H})^+$	formula	
240.0989	240.1019	C ₁₅ H ₁₄ NO ₂	12.44
222.0969	222.0913	$C_{15}H_{12}NO$	-25.07

Fig. S1 (continued)


d) Mfe- 256

Measured	Calculated	Molecular	Error
$(\mathbf{M}+\mathbf{H})^+$	$(\mathbf{M} + \mathbf{H})^+$	formula	(ppm)
238.0854	238.0863	C ₁₅ H ₁₂ NO ₂	3.77
210.0901	210.0913	$C_{14}H_{12}NO$	5.74
196.0757	196.0757	$C_{13}H_{10}NO$	12.11
182.0972	182.0964	$C_{13}H_{12}N$	-4.26

Fig. S1 (continued)

e) Mfe-290

Measured	Calculated	Molecular	Error
$(\mathbf{M} + \mathbf{H})^+$	$(\mathbf{M}+\mathbf{H})^+$	formula	(ppm)
272.0473	272.0473	$C_{15}H_{11}CINO_2$	2.47
244.0550	244.0524	C ₁₄ H ₁₁ ClNO	-10.72
238.0801	238.0863	$C_{15}H_{12}NO_2$	25.71
224.0706	224.0706	$C_{14}H_{10}NO_2 \\$	-22.43

Fig. S1 (continued)