Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2016

1	Supplementary information
2	Occurrence, spatiotemporal distribution, mass balance and ecological risks of
3	antibiotics in the subtropical shallow Lake Taihu, China
4	Li-Jun Zhou ^{a,*} , Qinglong L. Wu ^{a, b,*} , Bei-Bei Zhang ^c , Yong-Gang Zhao ^c , Bi-Ying
5	Zhao ^a
6	^a State Key Laboratory of Lake Science and Environment, Nanjing Institute of
7	Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
8	^b Sino-Danish Center for Education and Science, University of Chinese Academy of
9	Sciences
10	° State Environmental Protection Key Laboratory of Monitoring and Analysis for
11	Organic Pollutants in Surface Water, Jiangsu Provincial Environmental Monitoring
12	Center, Nanjing, China
13	*Corresponding author. Phone: +86 25 86882107. E-mail address: <u>qlwu@niglas.ac.cn</u>
14	or Phone: +86 25 86882240. E-mail address: <u>ljzhou@niglas.ac.cn</u>
15	
16	
17	
18	
19	
20	
21	
22	

23 Total number of pages: 60

- 24 Page S3: Reagents and Materials.
- 25 Page S3: Samples extraction.
- 26 Page S5: Instrumental conditions.
- 27 Page S6: Method quality.
- 28 Page S8: List of tables in Supplementary Information.
- 29 Pages S9–S53: Tables S1–S12.
- 30 Pages S54-S56: References.

31 Reagents and Materials.

Methanol and acetonitrile of HPLC grade were purchased from Merck 32 (Darmstadt, Germany), formic acid from Tedia Company (Fairfield, OH, USA). Other 33 chemicals disodium ethylenediamine tetraacetate (Na₂EDTA), citric acid and sodium 34 citrate were of analytical grade and obtained from Yaohua Chemical Reagent Factory 35 (Tianjin, China). Strong anion exchange (SAX) cartridges (6 mL, 500 mg) were 36 provided by Varian (Lake Forest, CA, USA) while Oasis HLB cartridges (6 mL, 200 37 mg or 6 mL, 500 mg) were supplied by Waters (Milford, MA, USA). Glass fiber 38 filters (GF/F, pore size 0.7 µm) were purchased from Whatman (Maidstone, England) 39 and pyrolyzed at 450 °C for 4 h prior to use. 40

About 10 mg of individual standard (corrected by purity and salt form) was
accurately weighed. Fluoroquinolones (including carbadox) were dissolved in 50 mL
of methanol with 25 μL formic acid. Other agents were dissolved in 50 mL of
methanol and stock solutions were stored at -20°C. From these stock solutions,
working solutions were prepared by gradient dilution.

46

47 Sample extraction.

Water. Lake water samples were filtered through glass fiber filters (0.7 μm) to remove
particles and the internal standards (100 ng) were added. To improve recovery of
tetracycline antibiotics, 0.2 g Na₂EDTA was added into each water sample. The SPE
cartridges were preconditioned with 10 mL methanol and 10 mL MilliQ water and
then water samples were introduced to the cartridges at a flow rate of 5-10 mL / min.

After loading of the water samples, the cartridges were rinsed with 10 mL of MilliQ 53 water and allowed to dry for 2 hours to remove excess water under vacuum. The 54 antibiotics retained on the cartridges were eluted with 12 mL methanol and then the 55 eluates were evaporated to near dryness under a gentle stream of nitrogen and re-56 dissolved in 1 mL of methanol. After filtration through a 0.22 µm membrane to 57 remove particles, the final extract was transferred to a 2 mL amber vial and stored at -58 18 °C until RRLC-MS/MS analysis. Just prior to the RRLC-MS/MS analysis, 100 μL 59 aliquot of each sample extract was evaporated and reconstituted in a mixed solvent. 60 Sediment. Two grams of each freeze-dried sediment sample were weighted into a 30 61 mL glass tube, followed by addition of 100 μ L of the work solutions of the internal 62 standards (1.0 mg/L each). Then the samples were mixed and placed in a refrigerator 63 at 4 °C overnight. Ten mL acetonitrile and 10 mL citric acid buffer (pH 3) were added 64 into each glass tube followed by mixing on a vortex mixer for 1min. All glass tubes 65 were then ultrasonicated for 15 min and centrifuged at 3024 g for 10 min. The 66 supernatant from each tube was piped into a 200 mL round-bottom flask. The 67 extraction process was repeated twice and the supernatants from the three extractions 68 were combined. The extract in the round-bottom flask from each solid sample was 69 evaporated at 50 °C to remove the organic solvent, and diluted to 200 mL with Milli-70 Q water to make sure that the organic solvent in the solution was less than 5%. Solid 71 extracts were very dirty with particulate matter and organic matter, which may cause 72 the cartridges to block or result in serious matrix effect. Strong anion exchange (SAX) 73 74 cartridges (6mL, 500mg) and HLB cartridges (6mL, 200mg) were set up in tandem

for cleaning up and enriching the aqueous sediment extracts. The SAX cartridge was 75 placed on top of the HLB cartridge for removing negatively charged humic and fulvic 76 acids of natural organic matter (NOM) in the solid sample. Prior to the SPE cleanup, 77 0.2 g of Na₂EDTA was added into each aqueous extract in order to chelate with metal 78 cations. Each tandem cartridge was pre-conditioned with 10 mL methanol and 10 mL 79 Milli-Q water and the diluted extract was passed through the cartridge at a flow rate 80 of 5 mL/min. Then the SAX cartridge was removed and the HLB cartridge was rinsed 81 with 10 mL Milli-Q water to remove weakly bound impurities and Na₂EDTA. The 82 elution and reconstitution conditions were the same as those described in the water 83 samples section. 84

85

86 LC-MS/MS conditions.

The target antibiotic compounds in the extracts were analyzed by rapid resolution 87 liquid chromatography-tandem mass spectrometry (RRLC-MS/MS) (Water Acquity 88 UPLC coupled to AB SCIEX Qtrap 5500) in multiple-reaction monitoring (MRM) 89 mode. The analyses were performed in the negative mode for two target antibiotic 90 compounds (CAP and FF) and in the positive mode for the other antibiotic 91 compounds. Nitrogen gas was used as the drying and collision gas. Mass 92 spectrometric conditions were optimized using Optimizer (Agilent, Palo Alto, USA) 93 for collision energy (CE), fragmentor voltage, and multiple reaction monitoring mode 94 (MRM) transitions for each compound (Table S6). All the target compounds were 95 96 separated by BEH-C18 (50 mm × 2.1 mm, 1.7 μm) column with BEH C18 VanGuard

97 pre-column (5 mm \times 2.1 mm, 1.7 μ m). The column temperature was set at 40 °C. The 98 injection volume for each sample was 5 μ L.

99 The mobile phases for the positive mode were Milli-Q water with 0.2% formic acid and 2 mM ammonium acetate (A) and acetonitrile (B) at a flow rate of 0.35 100 mL/min. The mobile phase gradient for the positive mode was ramped from 5% to 10% 101 B in 5 min, 10-20% B in 1 min, 20-40% B in 3 min, 40-50% B in 2 min and then 102 ramped to 95% B in 1min and kept for 12 min. The MS operating conditions in the 103 positive mode were set as follows: curtain gas (CUR), 30; collision gas (CAD), 104 medium; ionSpray voltage (IS), 5500; temperature, 550 °C; ion source gas 1, 50; ion 105 source gas 2, 50. 106

The mobile phases for the negative mode were MilliQ water (A) and acetonitrile (B) at a flow rate of 0.4 mL/min. The mobile phase gradient for the negative mode was ramped from 20% to 40% B in 3.2 min, and then ramped to 90% B in 0.5 min and kept for 2 min. The MS operating conditions in the negative mode were set as follows: curtain gas (CUR), 30; collision gas (CAD), medium; ionSpray voltage (IS), -4500; temperature, 600 °C; ion source gas 1, 60; ion source gas 2, 50.

113

114 Method quality.

Concentrations of the target compounds in the samples were performed using internal standard method. All data generated from the analysis were subject to strict quality control procedures. With each set of samples to be analyzed, a solvent blank, a procedure blank and an independent check standard (100 µg/L standard solution) were

119	run in sequence to check for carryover, background contamination, and system
120	performance. Appropriate field quality assurance and quality control (QA/QC)
121	procedures were followed. The reported quantitative values of each target compound
122	in the samples were required to have the same retention time as its calibration
123	standard (within \pm 5%) and the same ion ratios (within \pm 20%). Independent check
124	standard was injected approximately every twenty injections, and the concentration
125	computed was required to be within 20% of the expected value.
126	Method detection limits (MDL) and quantification limits (MQL) were
127	determined as the minimum detectable amount of an analyte from the two
128	environmental matrix spiked extract in MRM mode with a signal-to-noise of 3 and 10,
129	respectively. ¹ The S/N ratios were obtained from the data of the recovery test with
130	the lowest spiked concentration for each compound. Recovery experiments were
131	performed by spiking the standard solutions to surface water and sediment samples.
132	
133	

134 List of tables in Supplementary Information:

- 135 Table S1 Basic information of Lake Taihu
- 136 Table S2 Basic information for each sampling site in the Taihu Lake
- 137 Table S3 Chemical parameters of water (mg/L) collected from Lake Taihu
- 138 Table S4 The particle sizes and TOC of sediment samples of the Lake Taihu
- 139 **Table S5** Physicochemical properties of the antibiotics in this study.
- 140 Table S6 Details of antibiotics and their MRM parameters in RRLC-MS/MS
- 141 **Table S7** Recoveries (n = 3), method detection limits (MDLs), and method
- 142 quantitation limits (MQLs) of the antibiotics from surface water and sediment.
- 143 Table S8 Mass balance of antibiotics in the surface water and sediment of Lake Taihu
- 144 during two seasons
- 145 Table S9 Pseudo-distribution coefficient of antibiotics in Lake Taihu during two
- 146 seasons
- 147 Table S10 Occurrence of antibiotics in aquatic environment in the world
- 148 Table S11 Statistical analyses on temporal variations of antibiotics in water and
- 149 sediment of Lake Taihu
- 150 Table S12 Multiple linear regression analyses for the sediment properties (TOC and
- 151 texture) and concentrations of antibiotics in the sediments of Lake Taihu
- 152
- 153

Area		Annual			Aquatia	Live	stock	Land use for	agriculture ^c
Area	Main inflow/outflow rivers ^b	runoff $(10^8 \text{ m}^3)^{\text{b}}$	Catchment size (km ²) ^c	Population density (Person/km ²) ^c	products (kg) ^{c,d}	Density (Number/km ²) ^{c,e}	Proportion (Pig/cattle/sheep /chicken) ^{c,e}	agricultural area (km ²)	Area of aquatic farming (km ²)
Northern area			6.36×10 ³	1.06×10 ³	1.75×10 ⁸	5.47×10^{2}	1/0.07/0.02/0.55	2.55×10 ²	2.88×10 ³
Meiliang Bay									
Gong Bay	Wangyu River	8.30/-9.49							
Zhushan Bay	Yincungang River	5.56/-0.09							
Western area	Chendonggang River	9.98/-0.23	4.51×10 ³	5.32×10 ²	1.92×10 ⁸	5.24×10 ²	1/0.01/0.05/0.84	4.36×10 ²	2.44×10 ³
South area	Xitiaoxi River	7.05/-1.38	1.02×10^{4}	3.01×10 ²	3.58×10 ⁸	5.84×10 ²	1/0.02/0.08/0.55	3.22×10 ²	1.78×10^{3}
	Dongtiaoxi River	7.29/-9.68							
Eastern coast area	Xijiang River	0.05/-5.79	3.92×10 ³	8.84×10^{2}	1.80×10^{8}	4.23×10 ³	1/0.00/0.03/0.10	1.18×10^{2}	3.40×10 ³
East Lake	Taipu River	0.19/-36.85	4.23×10 ³	1.85×10 ³	2.22×10 ⁸	4.91×10 ²	1/0.08/0.03/0.53	6.15×10 ²	1.29×10 ³
	Xinyun River	0.43/-9.05							
The pelagic zone									

Table 1 Basin information of Lake Taihu.^a

^a Revised based on our previous paper. ² ^b Inflow is defined as positive and outflow is defined negative, and the data are cited from Qin et al. (2007).³ ^c Calculated based on data from Wuxi Statistical Yearbook 2014, Suzhou Statistical Yearbook 2014, Hangzhou Statistical Yearbook 2014, Changzhou Statistical Yearbook 2014, Jiaxing Statistical Yearbook 2014, Huzhou Statistical Yearbook 2014. ^{4-9 d} Aquatic products refer to seafood products such as fish and shrimp. ^e Livestock includes cattle, pigs, sheep, and poultry; and the number of animals other than the pig was converted into the number of pigs according to the volume of waste generated by each animal.

Site	Geographi	c location	Weighted water area ^a	Dept	h (m)	Condu (µs/	ictivity (cm)	Wate	er pH	Turbidit	y (NTU)	Cł (µį	nl-a g/L)	Phycocya (cell/r	nobilin nL)	E (m)o g/L)
	(N,	E)	5	May	Nov.	May	Nov.	May	Nov.	May	Nov.	May	Nov.	May	Nov.	May	Nov.
S 1	120°13′10"	31°32′23"	1/8Average area	3.6	2.7	618	462	8.6	8.63	8.2	23.9	6.2	8.3	282	7810	9.66	12.0
S2	120°11′26"	31°30′47"	1/4Average area	2	2.2	571	470	8.41	8.33	4.7	13.6	1.4	11.6	274	5080	9.01	11.2
S 3	120°11′40"	31°28′35"	1/4Average area	2.4	2.7	548	462	8.54	8.63	14.9	23.9	20.4	8.3	1840	7810	12.0	12.0
S4	120°11′17"	31°26′10"	1/4Average area	2.5	2.8	552	463	8.48	8.52	14.2	15.3	5.1	4.5	300	3152	9.02	11.7
S5	120°11′14"	31°24′40"	1/4Average area	2.7	2.7	542	460	8.95	8.43	10.5	21	3.9	6.4	127	6360	9.15	11.0
S 6	120°7′52"	31°30′14"	Average area	1.6	1.7	645	468	8.14	8.32	18.8	14.3	36.4	4.9	4200	3160	12.4	11.8
S 7	120°10′49"	31°20′18"	1.2Average area	2.9	1.8	696	439	6.98	8.48	50	18.2	7	3.9	6170	3140	8.96	11.2
S 8	120°10′14"	31°14′53"	2Average area	2.8	3	597	440	8.23	8.15	35.7	26.3	5	2.4	2510	3650	8.55	11.1
S9	120°15′11"	31°30′47"	1/8Average area	2.3	2.7	31	385	8.32	8.36	8.8	24.6	15.5	15.1	3030	1350	11.2	9.48
S10	119°56′42"	31°18′52"	2Average area	1.8	1.9	616	572	8.82	8.27	59	43.3	16.4	9.4	NA ^b	1460	6.02	5.69
S11	120°7′7"	30°57′49"	1.5Average area	1.7	2.2	546	315	8.77	8.22	33.4	58.6	8.8	4	NA	1470	9.53	11.0
S12	120°27′14"	31°1′18"	1Average area	1.1	1.6	486	445	8.72	8.07	11.8	4.7	4.8	3.3	NA	457	9.31	10.7
S13	120°17′44"	31°23′11"	1.2Average area	1.8	2.2	649	407	8.58	8.44	51.8	30	8.6	8.7	NA	4040	8.8	10.9
S14	120°22′37"	31°26′6"	1.2Average area	1.8	2.5	489	427	8.67	8.37	39.2	18.4	6.2	13	NA	2290	8.66	11.1
S15	120°14′10"	31°31′23"	1/10Average area	2.3	2.3	476	387	8.1	8.34	11	18.8	17.8	22.7	3500	1640	10.6	10.0
S16	120°1′41"	31°27′	Average area	1.8	2.2	669	552	8.52	7.99	11.6	3.5	16.3	2.7	NA	200	6.75	8.63
S17	120°1′55"	31°23′51"	Average area	2.1	2.4	658	476	8.5	8.16	17.8	2.6	5.3	7.5	NA	943	7.99	10.2
S18	120°3′22"	31°18′29"	1.6Average area	2.9	2.6	629	463	7.26	8.48	47.6	29.7	6	2.6	1930	2310	8.53	11.1
S19	120°1′24"	31°11′26"	1.6Average area	2.8	3.24	534	457	7.41	8.6	72.3	44.8	8.3	3.4	3012	9090	8.38	10.8
S20	119°58′2"	31°6′28"	1.7Average area	2.1	2.4	553	458	8.76	8.24	67.6	41.5	6.4	4.4	NA	5490	8.83	10.8

Table S2 Basic information for each sampling site in the Taihu Lake

S21	120°8′38"	31°6′59"	2Average area	2.7	2.7	378	441	7.65	8.19	59.7	46.6	8.2	4.2	3260	9090	8.67	10.8
S22	120°11′23"	30°59′28"	Average area	1.9	2.6	546	422	8.75	8.17	90.7	38.6	6.4	3.1	NA	3700	8.87	11.0
S23	120°13′58"	31°0′45"	Average area	2.1	2.7	573	428	8.7	8.19	95.2	26.6	7.4	2.8	NA	3630	8.92	11.1
S24	120°22′45"	30°58′51"	1.2Average area	1.5	2.1	573	338	8.68	8.23	13.5	7.1	5.2	4	NA	256	9.5	9.56
S25	120°30′48"	31°5′22"	Average area	1.1	1.7	416	463	8.89	8.06	2.3	6.7	5.6	13.2	NA	3410	11.2	8.91
S26	120°20′8"	31°5′57"	Average area	1.6	2	5	477	8.75	8.01	15.8	10.9	6.7	2.3	NA	576	8.48	9.97
S27	120°24′21"	31°10′37"	Average area	1.4	2	554	450	8.17	8.16	50.6	2	8.4	1.1	3860	NA	8.94	11.6
S28	120°27′53"	31°12′20"	Average area	1.6	1.9	483	443	8.62	8.26	5.5	4.56	3	6.4	465	894	12.2	10.4
S29	120°20′1"	31°10′16"	1.2Average area	2.4	2.2	574	341	7.95	8.21	36.4	23.6	8	2.9	3670	3340	8.9	10.7
S30	120°19′53"	31°14′41"	Average area	1.9	2.4	549	432	8.67	8.16	32.9	18.5	6.9	4.2	NA	2580	8.83	11.0
S31	120°14′30"	31°21′12"	Average area	1.6	2.6	603	438	8.61	8.54	37	33.4	5.1	4.6	NA	3520	8.56	11.0
S32	120°8′45"	31°24′24"	1/2Average area	2.4	2.2	665	464	9.38	8.49	64.8	19	7.3	7.7	NA	3100	9.13	10.5

^a The weighted water areas used for mass balance calculation equal to weighting coefficient \times Average water area, based on real occupied areas. The average area value 73,062,500 m² at each sampling site was obtained by the whole areas of Lake Taihu (2,338 km²) divided by 32 sites. ^b NA: Not available.

T 4:		S	Summer	ſ	×	0 /		Winter		
Location	BOD ₅	COD	ТР	TN	NH ₄ -N	BOD ₅	COD	ТР	TN	NH ₄ -N
S 1	1.82	4.11	0.081	1.90	0.46	4.02	4.22	0.097	1.76	0.53
S2	1.86	4.27	0.065	2.67	0.42	1.92	4.00	0.082	1.44	0.49
S3	2.42	5.53	0.142	4.46	0.61	2.14	6.29	0.147	2.24	0.42
S4	1.65	4.89	0.104	4.29	0.46	1.27	4.33	0.090	1.63	0.39
S5	1.36	3.86	0.079	3.45	0.50	1.59	4.30	0.101	1.50	0.42
S 6	1.80	4.77	0.140	4.75	0.88	1.68	4.55	0.102	1.82	0.40
S7	2.09	4.50	0.090	3.97	0.48	1.78	4.98	0.109	1.44	0.43
S 8	1.24	3.41	0.064	2.72	0.60	0.81	3.93	0.073	1.05	0.50
S9	3.16	3.63	0.057	1.14	0.60	2.78	4.04	0.092	1.10	0.34
S10	6.51	5.92	0.265	4.92	1.11	3.25	5.95	0.258	4.51	1.86
S11	1.47	3.35	0.057	2.52	0.39	1.72	4.64	0.115	3.24	0.36
S12	1.24	3.64	0.043	1.15	0.38	0.75	3.34	0.027	0.77	0.40
S13	1.16	3.19	0.077	3.27	0.32	1.39	3.48	0.073	1.03	0.42
S14	1.43	2.86	0.075	1.96	0.57	1.35	3.88	0.074	0.91	0.39
S15	4.24	3.84	0.068	1.23	0.39	3.98	4.20	0.092	0.99	0.27
S16	4.26	5.71	0.161	5.04	1.69	1.55	4.91	0.133	3.42	1.35
S17	1.82	5.55	0.158	5.39	1.02	2.06	4.49	0.093	3.21	0.74
S18	1.51	3.30	0.077	3.18	0.30	1.43	4.27	0.098	1.35	0.41
S19	1.28	3.97	0.133	3.62	0.48	1.80	4.74	0.120	1.54	0.29
S20	1.45	3.30	0.086	2.85	0.37	1.78	4.48	0.117	1.75	0.36
S21	1.20	3.19	0.063	2.74	0.19	1.17	3.75	0.089	1.37	0.33
S22	1.03	3.69	0.075	2.89	0.28	1.49	4.33	0.087	1.57	0.46

 Table S3 Chemical parameters of water (mg/L) collected from Lake Taihu

S23	1.30	3.52	0.076	2.73	0.19	1.31	3.51	0.059	1.26	0.40
S24	2.42	4.12	0.031	1.98	0.16	0.83	2.88	0.028	2.41	0.45
S25	2.05	4.81	0.036	0.76	0.30	2.26	4.63	0.057	1.02	0.43
S26	4.69	5.70	0.038	1.75	0.26	0.73	2.89	0.026	0.70	0.33
S27	1.16	3.17	0.049	1.90	0.29	0.69	2.81	0.021	0.55	0.21
S28	0.72	3.03	0.021	1.04	0.18	0.73	2.99	0.017	0.48	0.24
S29	1.20	3.11	0.050	2.30	0.25	1.39	4.03	0.047	1.41	0.22
S30	1.61	3.19	0.046	2.07	0.22	1.17	3.41	0.038	0.84	0.30
S 31	1.07	3.25	0.065	2.68	0.52	1.63	4.63	0.112	1.46	0.47
S32	2.19	4.73	0.112	4.08	0.32	2.30	3.91	0.089	1.45	0.42

	>0	.064 mm	0.016	-0.064 mm	0.004-	0.016 mm	<0.	004 mm	-	ГОС
Sites		(sand)	(co	arse silt)	(fi	ine silt)		(clay)		(%)
	May	November	May	November	May	November	May	November	May	November
S1	ND	2.95	41.09	45.57	48.39	41.51	10.52	9.98	1.2671	1.3706
S2	1.73	7.81	40.58	43.10	50.41	42.08	7.28	7.02	0.8542	0.7542
S3	1.36	2.96	37.21	38.73	50.88	47.95	10.55	10.36	0.8071	0.8472
S4	ND	0.13	33.52	31.38	55.75	59.99	10.73	8.51	0.7878	0.7963
S5	0.74	0.85	38.54	34.83	51.60	54.16	9.12	10.17	0.7422	0.7968
S6	2.21	3.87	55.22	64.18	33.77	24.97	8.81	6.98	0.6063	0.4570
S 7	3.15	2.89	37.94	36.29	52.08	53.31	6.84	7.51	0.6552	0.5970
S 8	6.98	1.03	49.58	37.43	31.33	49.33	12.11	12.21	0.4357	0.5078
S9	4.90	0	43.55	29.63	39.37	57.38	12.19	12.99	1.2062	1.1516
S10	0.12	0.51	61.30	63.47	34.66	32.44	3.92	3.58	0.5892	0.6297
S11	2.59	0	40.46	37.23	44.38	54.75	12.58	8.02	0.5469	0.4683
S12	0.31	0	46.76	45.57	43.37	43.62	9.56	10.81	1.2447	1.0917
S13	0.13	0	33.64	33.18	54.84	57.59	11.39	9.23	0.8067	0.7778
S14	0.45	0	42.39	36.33	45.25	47.64	11.91	16.03	0.7229	0.3594
S15	4.68	2.72	44.49	58.19	37.75	32.53	13.09	6.57	1.1264	0.7790
S16	3.35	0	46.02	37.64	40.90	51.81	9.73	10.55	1.2403	1.1231
S17	0.56	1.97	42.83	43.68	45.42	43.96	11.19	10.39	1.0943	1.0288
S18	0.95	0.01	33.68	33.36	55.86	58.84	9.52	7.79	0.7321	0.6629
S19	2.28	4.51	42.78	48.76	46.97	38.71	7.97	8.03	0.5563	0.4610
S20	6.05	0.86	41.15	41.45	44.54	51.80	8.26	5.90	0.5683	0.5318
S21	0.87	0	36.64	35.25	53.34	55.67	9.16	9.09	0.5838	0.6537
S22	ND	0.13	32.97	34.75	56.22	53.16	10.81	11.96	0.6406	0.5992

Table S4 The particle sizes and TOC of sediment samples of the Lake Taihu

S23	0.27	0	37.12	33.28	52.11	55.19	10.50	11.53	0.6068	0.6331
S24	4.50	1	43.26	47.25	41.92	44.05	10.32	7.69	1.0852	1.0552
S25	3.17	3.69	66.38	61.11	26.36	29.87	4.10	5.32	1.3125	1.0843
S26	0.99	3.67	40.85	33.71	49.29	49.84	8.88	12.78	1.0568	1.3062
S27	6.66	0.09	41.06	47.21	41.23	42.73	11.06	9.96	0.5879	0.9489
S28	NA ^a	NA	NA	NA	NA	NA	NA	NA	NA	NA
S29	2.01	NA	40.15	NA	47.11	NA	10.73	NA	0.6701	NA
S30	8.65	6.91	52.97	55.27	31.73	30.49	6.65	7.33	0.6383	0.6042
S31	4.75	1.48	43.89	45.05	43.34	46.89	8.03	6.58	0.6526	0.5965
S32	1.41	0	29.90	32.05	59.22	61.97	9.48	5.98	0.7845	0.7233

^a NA: Not available

		- *****	. ~ e j .	P						
		C L C	NOV		Solubility	T TZ a	IZ h	Solid-water distribution		
Class	Compound	CAS	MW	Formula	(in water, mg L ⁻	LogK _{ow} ^a	pK _a ^b	Matrices	Kd (L/kg)	Koc (L/kg)
Sulfonamides	Sulfacetamide	144-80-9	214.2	$C_8H_{10}N_2O_3S$	12500 °	-0.96 °	5.4 ^d			
	Sulfachlorpyridazine	80-32-0	284.7	C10H9ClN4O2S			1.87, 5.45 °	Clay loamy, sandy loam	0.9-1.8 ^f	
	Sulfadiazine	68-35-9	250.3	$C_{10}H_{10}N_4O_2S$	77 ^f	-0.09 f	1.6 6.4 ^f	Whole soil, clay, sand fraction	1.4-2.8 ^f	37-125
	Sulfadoxine	2447-57-6	310.3	$C_{12}H_{14}N_4O_4S$	2700 °	0.7 °	3.15 6.16 ^g			
	Sulfadimethoxine	122-11-2	310.3	$C_{12}H_{14}N_4O_4S$	343 °	1.63 ° 1.4 ^h	6.3 ^d 2.13, 6.08 ^e	Whole soil, clay, sand fraction	2.3-4.6 ^f	89-144
	Sulfamethazine	57-68-1	278.3	$C_{12}H_{14}N_4O_2S$	1500 ^f	0.80 ^f	2.07 7.49 ° 2.65 ^d	Sand, loamy sand, sandy loam	0.6-3.2 ^f	82-208
	Sulfamethoxazole	723-46-6	253.3	$C_{10}H_{11}N_{3}O_{3}S$	610 °	0.89 °	1.85 5.6 ° 5.9 ^d			
	Sulfamonomethoxine	1220-83-3	280.3	$C_{11}H_{12}N_4O_3S$	4030 °	0.7 °				
	Sulfapyridine	144-83-2	249.3	$C_{11}H_{11}N_3O_2S$	270 ^f	0.35 ^f	2.58 8.43 ^f 8.4 ^d	Silty loam	1.6-7.4 ^f	101-308
								Whole soil, clay, sand fraction	3.1-3.5 ^f	80-218
	Sulfaquinoxaline	59-40-5	300.4	$C_{14}H_{12}N_4O_2S$	7.5 °	1.68 °				
	Sulfisoxazole	127-69-5	267.3	$C_{11}H_{13}N_3O_3S$	300 °	1.01 °		Clay loam	1.5 ⁱ	48
	Sulfathiazole	72-14-0	255.3	$C_9H_9N_3O_2S_2$	373 °	0.05 °	2.0 ^d 2.01, 7.11 ^e	Loamy sand	4.9 ^j	200
Diaminopyrimidines	Trimethoprim	738-70-5	290.3	$C_{14}H_{18}N_4O_3$	400 °	0.91 °	3.23 6.76 °	Sewage sludge	76 ⁱ	205
Tetracyclines	Chlortetracycline	57-62-5	478	C22H23ClN2O8	630 °	-0.62 °	3.33 7.55 9.33 °	Clay loam, sandy loam	1280-2386 f	

Table S5 Physicochemical properties of the antibiotics in this study.

	Doxycycline	564-25-0	444.4	$C_{22}H_{24}N_2O_8$	630 °	-0.02 °	3.02 7.97 9.15 °			
	Oxytetracycline	79-57-2	460.4	$C_{22}H_{24}N_2O_8$	1000 ^j	-1.22 ^j	3.22 7.46 8.94 °	Loamy sand, sand	417-1026 ^f	42506-9337
	Tetracycline	60-54-8	444.4	$C_{22}H_{24}N_2O_8$	1700 ^j	-1.19 ^j	3.32 7.78 9.58 °	Clay loam, sandy loam	1147-2370 ^f	
								Aldrich humic acid	1430-2060 ^j	
Fluoroquinolones	Ciprofloxacin	85721-33-1	331.3	$C_{17}H_{18}FN_3O_3$	30000 j	0.4 ^j	3.01 6.14 8.70 10.58 °	Loamy sand	427 ^f	61000
								Sewage sludge	417 ^f	1127
	Danofloxacin	112398-08-0	357.4	C19H20FN3O3		1.85 ^f	2.73 9.13 ^f	Humic acid from a soil	630 ^j	
	Difloxacin	98106-17-3	399.4	$C_{21}H_{19}F_2N_3O_3$	1330 °	0.89 °				
	Enrofloxacin	93106-60-6	359.4	C ₁₉ H ₂₂ FN ₃ O ₃	130000 °	1.1 ^j	3.85 6.19 7.59 9.86 °	Clay, loam, loamy sand	260-5612 ^f	16510-99980
								Humic acid from a soil	110 ^j	
	Fleroxacin	79660-72-3	369.34	$C_{17}H_{18}F_3N_3O_3$	7320 °	0.24 °				
	Lomefloxacin	98079-51-7	351.3	$C_{17}H_{19}F_2N_3O_3$	27200 °	-0.3 °				
	Marbofloxacin	115550-35-1	362.4	C17H19FN4O4						
	Norfloxacin	70458-96-7	319.3	C ₁₆ H ₁₈ FN ₃ O ₃	17800 °	-1.03 °	3.11 6.10 8.6 10.56 e			
	Ofloxacin	82419-36-1	361.3	$C_{18}H_{20}FN_{3}O_{4}$	2830 °	0.36 ⁱ	5.97 8.28 ^k	Humic acid from a soil	100 ^j	
								Loamy sand	309 ⁱ	44140
	Pefloxacin	70458-92-3	333.4	C17H20FN3O3	1140 °	0.27 °				
	Sarafloxacin	98105-99-8	385.4	$C_{20}H_{17}F_2N_3O_3$	100 ^j	1.07 °	6.0 8.6 ^j	Aldrich humic acid	18700-52700 j	55000-155000
	Carbadox	6804-7-5	262.2	$C_{11}H_{10}N_4O_4$	15000 °	-1.37 °				

Macrolides	Azithromycin	83905-01-5	749	C38H72N2O12						
	Clarithromycin	81103-11-9	748.0	C ₃₈ H ₆₉ NO ₁₃	0.342 °	3.16 °	8.99 °			
	Erythromycin	114-07-8	733.9	C ₃₇ H ₆₇ NO ₁₃	20001	3.06 °	8.9°			
	Erythromycin-H ₂ O	23893-13-2	715.9	C ₃₇ H ₆₅ NO ₁₂						
	Leucomycin	1392-21-8	771	C ₃₉ H ₆₅ NO ₁₄						
	Oleandomycin	3922-90-5	687.9	C ₃₅ H ₆₁ NO ₁₂	15.5 °	1.69 °	3.31 7.50 ° 8.84 °			
	Roxithromycin	80214-83-1	837.0	$C_{41}H_{76}N_2O_{15}$		2.75 °	9.17 °			
	Tylosin	1401-69-0	916.1	C ₄₆ H ₇₇ NO ₁₇	5 °	1.63 °	7.73 °	Loamy sand, sand	8.3-128	553-7990
Ionophores	Salinomycin	53003-10-4	751	$C_{42}H_{70}O_{11}$	17-905 ^m	8.53 ° 5.15 ^m	4.5,6.4 ^m			
	Monensin	17090-79-8	670.9	$C_{36}H_{62}O_{11}$	63 ⁿ 5-63 ^m	2.75 ⁿ 2.8-4.1 ^m	6.65 ⁿ 6.7 ^m			
	Narasin	55134-13-9	765.0	$C_{43}H_{72}O_{11}$	102-681 ^m	4.9-6.2 ^m	7.9 m			
Aminocoumarins	Novobiocin	303-81-1	612.6	$C_{31}H_{36}N_2O_{11}$		2.45 °	4.3 °			
Lincosamides	Lincomycin	154-21-2	406.5	$C_{18}H_{34}N_2O_6S$	927 °	0.56 °				
Chloramphenicol derivatives	Florfenicol	73231-34-2	358.2	C ₁₂ H ₁₄ Cl ₂ FNO ₄ S		-0.04 °	-			
	Chloramphenicol	154-75-2	323.1	$C_{11}H_{12}Cl_2FN_2O_5$	2500 °	1.14 °		Fresh water sediment	0.4 ^j	

^a K_{ow}: the octanol-water partition coefficient; ^b pK_a: acidity constant; ^c U.S. National Library of Medicine ChemIDPlus Advanced.

(http://chem.sis.nlm.nih.gov/chemidplus/), accessed on 10 September, 2011; ${}^{d}[{}^{10}]$; ${}^{e}[{}^{11}]$; ${}^{f}[{}^{12}]$; ${}^{g}[{}^{13}]$; ${}^{h}[{}^{14}]$; ${}^{i}[{}^{15}]$; ${}^{j}[{}^{16}]$; ${}^{k}[{}^{17}]$; ${}^{1}[{}^{18}]$; ${}^{m}[{}^{19}]$; ${}^{n}[{}^{20}]$; ${}^{o}[{}^{21}]$.

Analyte	Abbr. ^a	Supplier	M.W.	CAS	R.T. ^b	MRM-transitions	Fragmentor	CEd
					(min)	с	(V)	(eV)
ESI+								
Sulfonamides	SAs							
Sulfacetamide	SCT	Dr.Ehrenstorfer	214.2	144-80-9	0.79	<u>215→91.8</u>	40	28
						215→155.9	40	14
Sulfachloryridazine	SCP	Dr.Ehrenstorfer	284.7	80-32-0	2.79	<u>284.8→155.8</u>	40	19
						284.8→107.9	40	32
Sulfadiazine	SDZ	Dr.Ehrenstorfer	250.3	68-35-9	0.91	<u>250.9→155.7</u>	40	20
						250.9→92	40	32
Sulfadoxine	SDO	Dr.Ehrenstorfer	310.3	2447-57-6	3.51	<u>310.9→155.9</u>	60	26
						310.9→107.9	60	33
Sulfadimethoxine	SDM	Dr.Ehrenstorfer	310.3	122-11-2	5.86	<u>310.8→155.9</u>	100	27
						310.8→107.9	100	33
Sulfamethazine	SMZ	Dr.Ehrenstorfer	278.3	57-68-1	1.83	<u>279→185.9</u>	75	23
						279→155.9	75	25
Sulfathiazole	STZ	Dr.Ehrenstorfer	255.3	72-14-0	1.06	<u>256→155.8</u>	90	18
						256→91.8	90	30
Sulfamethoxazole	SMX	Dr.Ehrenstorfer	253.3	723-46-6	3.42	<u>253.9→155.9</u>	90	22
						253.9→107.9	90	30
Sulfamethoxazole-D ₄	SMX-D ₄	Dr.Ehrenstorfer	257.3	1020719-86-1	3.36	<u>258.1→159.9</u>	90	20
(IS) ^e						258.1→111.9	90	32
Sulfamerazine	SMR	Dr.Ehrenstorfer	264.3	127-79-7	1.31	<u>264.8→92.1</u>	70	34
						264.8→108.2	70	33
Sulfamerazine-D ₄	SMR-D ₄	TRC	268.3		1.28	<u>269→159.9</u>	70	21
						269→109.8	70	27
Sulfamonomethoxine	SMM	Dr.Ehrenstorfer	280.3	1220-83-3	2.70	<u>281.2→155.8</u>	110	24
						281.2→107.8	110	31
Sulfapyridine	SPD	Dr.Ehrenstorfer	249.3	144-83-2	1.45	<u>249.9→155.9</u>	60	21
						249.9→92.1	60	33
Sulfaquinoxaline	SQX	Dr.Ehrenstorfer	300.4	59-40-5	6.11	<u>300.9→91.8</u>	90	31
						301.3→107.9	90	32

Table S6 Details of antibiotics and their MRM parameters in RRLC-MS/MS

Sulfisoxazole	SX	Dr. Ehrenstorfer	267.3	127-69-5	4.15	268→156.0	90	17
						268→112.9	90	21
Tetracyclines	TCs							
Chlortetracycline	CTC	Dr.Ehrenstorfer	478	57-62-5	5.08	<u>479→444</u>	90	27
						479→462.1	90	23
Doxycycline	DC	Dr.Ehrenstorfer	444.4	564-25-0	6.50	<u>445→428.1</u>	155	22
						445→410	155	32
Thiabendazole-D ₄	TBD- D ₄	TRC		71535-97-2	1.09	<u>205.9→134.9</u>	180	45
(IS)						205.9→178.9	180	35
Oxytetracycline	OTC	Dr.Ehrenstorfer	460.4	79-57-2	1.94	<u>461.1→426.1</u>	80	25
						461.1→443.1	80	17
Tetracycline	TC	Dr.Ehrenstorfer	444.4	60-54-8	2.47	445.1→410.0	80	26
						445.1→426.8	80	17
Tetracycline- D ₆ (IS)	$TC-D_6$	TRC	450.5		2.46	<u>451.3→416</u>	65	26
						451.3→114	65	16
Fluoroquinolones	FQs							
Ciprofloxacin	CFX	Dr.Ehrenstorfer	331.3	85721-33-1	2.14	<u>331.9→314</u>	95	26
						331.9→288.1	95	24
Ciprofloxacin-D ₈ (IS)	$CFX-D_8$	Dr.Ehrenstorfer			2.12	<u>340.1→322</u>	95	30
						340.1→296.1	95	26
Danofloxacin	DAN	Dr.Ehrenstorfer	357.4	112398-08-0	2.64	<u>358→340.1</u>	90	31
						358→314	90	25
Difloxacin	DIF	Dr.Ehrenstorfer	399.4	98106-17-3	3.96	$\underline{400.2} \rightarrow 356$	90	24
						400.2→381.9	90	27
Enrofloxacin	EFX	Dr.Ehrenstorfer	359.4	93106-60-6	2.90	<u>360→316.2</u>	100	27
						360→342	100	28
Enrofloxacin-D ₅ (IS)	$EFX-D_5$	Dr.Ehrenstorfer	364.4		2.87	<u>365.1→321.1</u>	70	36
						365.1→347.1	70	30
Fleroxacin	FL	Dr.Ehrenstorfer	369.34	79660-72-3	1.91	$\underline{370.1} \rightarrow \underline{326}$	115	25
						370.1→268.9	115	36
Norfloxacin	NFX	Dr.Ehrenstorfer	319.3	70458-96-7	1.93	<u>320→301.8</u>	120	26
						$\underline{320} \rightarrow \underline{276}$	120	23
Lomefloxacin	LFX	Dr.Ehrenstorfer	351.3	98079-51-7	2.52	<u>351.8→265</u>	90	30
						351.8→308	90	22

Markaflamain	MAD	Da Elenensteafor	2(2)	115550 25 1	1.64	2(2,72	05	26
Marbofloxacin	MAK	Dr.Enrenstorrer	362.4	115550-35-1	1.64	$\frac{363 \rightarrow /2}{2(2 + 210)}$	95	26
Oflowerin	OEV	Dr Ebronstorfor	261.2	92410 26 1	1.07	$303 \rightarrow 319.9$	95 124	21
Olloxacin	OFX	Dr.Enrenstorier	301.3	82419-30-1	1.97	$\frac{302 \rightarrow 201}{2(2 \rightarrow 218, 1)}$	124	35
Deflement	DEE	Da Ebasastaafaa	222.4	70459 02 2	2.50	$302 \rightarrow 318.1$	124	20
Pelloxacin	PEF	Dr.Enrenstorier	333.4	/0458-92-5	2.59	$\frac{334 \rightarrow 290}{224 \rightarrow 216}$	120	20
Canadiana	CAD	Da Ebasastaafaa	295 4	00105 00 0	2 70	$334 \rightarrow 310$	120	20
Saranoxacin	SAK	Dr.Enrenstorier	385.4	98105-99-8	3.79	$\frac{380.1 \rightarrow 308}{286.1 \rightarrow 242.1}$	140	27
Carbaday	CAD	Dr Ebronstorfor	262.2	6904 7 5	1.51	$380.1 \rightarrow 342.1$	140	20
Carbadox	CAK	DI.Emensioner	202.2	0804-7-5	1.31	$203.3 \rightarrow 129.0$	68	17
Maanalidaa	MLa					203.5→251.1	08	17
Azithromycin		Dr Ebronstorfor	740.0	830005 01 5	7 50	7/0 5-150 2	61	40
Aziunomycin	AIM	DILEMENSIONEI	/49.0	830903-01-3	7.39	$749.3 \rightarrow 138.2$	64	40
Clarithromusin	СТМ	Dr Ebronstorfor	748.0	81102 11 0	7 50	$749.3 \rightarrow 591.3$	04	30 27
Claritunoinychi	CIM	DILEMENSIONEI	/48.0	81103-11-9	1.59	$748.9 \rightarrow 138.2$	95	20
Eruthromusin U O	ETM U O	TPC	715.0	22802 12 2	7 44	$746.9 \rightarrow 390.0$	93	29 42
Eryunomychi-H ₂ O	ETM-H2O	IKC	/15.9	25895-15-2	7.44	$710.0 \rightarrow 138.5$	83 85	42
Eruthromucin ¹³ C D.	ETM 13C D.	TPC			7 11	$710.0 \rightarrow 558.5$ $720.7 \rightarrow 162.4$	07	42
(IS)	$E I W - C - D_3$	IKC			/.44	$\frac{720.7 \rightarrow 102.4}{720.7 \rightarrow 562.5}$	97	42
(15) Leucomucin	I CM	Dr Ebrenstorfer	771	1302 21 8	7 46	$720.7 \rightarrow 502.5$	132	63
Leucomycm	LCM	DILEMENSIONEI	//1	1392-21-0	7.40	$\frac{772.7 \rightarrow 109.1}{772.7 \rightarrow 174.2}$	132	44
Oleandomycin	ODM	Dr Ebrenstorfer	687.0	3022 00 5	7.67	$680 \rightarrow 158 1$	100	44
Oreandomyeni	ODIVI	DILLINCHStorrer	007.7	3722-70-3	1.07	$689 \rightarrow 544$	100	72 28
Rovithromycin	RTM	Dr Ehrenstorfer	837.0	80214-83-1	7.63	$837.8 \rightarrow 158.1$	100	20 47
Roximoniyeni	IX I WI	DILLINCHStorrer	057.0	00214-05-1	7.05	$\frac{037.0 \times 130.1}{837.8 \longrightarrow 679.8}$	102	29
Tylosin	TVI	Dr Fhrenstorfer	916.1	1401-69-0	7.26	$9167 \rightarrow 1743$	102	55
1 y losin	TIL	DILLINCHStorrer	710.1	1401-09-0	7.20	$\frac{916.7 \rightarrow 772.4}{916.7 \rightarrow 772.4}$	141	41
Iononhores	IPs					710.7 7772.4	141	71
Salinomycin	SAL	Dr Fhrenstorfer	751	53003-10-4	9 99	773 6→431 4	160	68
Sumonyon	0/1L	Dillinenstorier	101	55005 10 4	1.11	$773.6 \rightarrow 265.2$	160	70
Narasin	NAR	TRC	765.0	55134-13-9	10.2	787 7→431 6	175	, 0 69
1 10100111	112 112	inc	105.0	55151 15 /	10.2	$\frac{787.7 \rightarrow 131.0}{787.7 \rightarrow 531.5}$	175	62
Monansin	MON	Dr Ehrenstorfer	670.9	17090-79-8	10.0	603 5-675 7	170	52
WIDHEISIII							1/1	. 1 / -

Others								
Trimethoprim	TMP	Dr.Ehrenstorfer	290.3	738-70-5	1.71	<u>291.1→122.9</u>	150	31
						291.2→230.1	150	31
Trimethoprim-D ₃ (IS)	TMP- D ₃	TRC			1.66	<u>294.4→123.1</u>	150	30
						294.4→230.0	150	47
Lincomycin	LIN	Dr.Ehrenstorfer	406.5	154-21-2	1.23	<u>407.5→126.1</u>	80	32
						407.5→359.1	80	26
Lincomycin-d ₃	LIN-D ₃	TRC			1.23	<u>410.6→129.1</u>	80	30
						410.6→362.2	90	25
ESI-								
Florfenicol	FF	Dr.Ehrenstorfer	358.2	73231-34-2	2.92	<u>355.7→335.8</u>	60	12
						355.7→184.5	60	25
Chloramphenicol	CAP	Dr.Ehrenstorfer	323.1	154-75-2	3.63	<u>320.8→152</u>	40	21
						320.8→256.8	40	15
Chloramphenicol-d ₅	CAP-D ₅	Dr.Ehrenstorfer	328.1		3.61	<u>325.7→156.8</u>	55	23
						325.7→261.8	55	16

^a Abbreviation. ^b Retention time. ^c The selected ions for the antibiotic compounds were [M+H]⁺, except ionophore compounds ([M+Na]⁺), florfenicol and chlormphenicol ([M-H]⁻). The underlined MRM transitions were used for quantification. ^d Collision energy. ^eInternal standard.

Analyte	IS ^a		Su	rface water					Sedimen	t		
		10 ng/L	100 ng/L	Matrix%	MDLs (ng/L)	MQLs (ng/L)	10 ng/g	50 ng/g	100 ng/g	Matrix%	MDLs (ng/L)	MQLs (ng/L)
SCT	SMX-D ₄	102±8.56 ^b	87±11.6	101±3.54 °	0.21	0.70	46.8±10.8 ^d	30.8±5.52	30.1±4.51	119±3.93	0.28	0.93
SCP	$SMX-D_4$	108±5.16	114±3.39	140 ± 2.82	0.30	1.00	110 ± 14.1	123±9	133±11.9	125±4.54	0.24	0.80
SDZ	SMR-D ₄	106±4.78	93.1±6.21	112 ± 1.98	0.07	0.24	101±2.36	95.4±20.1	78.5±16.1	89.5±9.32	0.12	0.41
SDO	SMX-D ₄	103 ± 5.88	105 ± 4.09	110±4.81	0.14	0.48	115±7.3	101±5.4	97±4.3	93.0±1.4	0.09	0.30
SDM	SMX-D ₄	114±5.83	123±5.11	126±5.66	0.12	0.41	125±10.8	112±4.73	105±3	92.4±1.6	0.07	0.23
SMR	$SMR-D_4$	90.1±3.21	85.7±7.75	95.1±1.56	0.16	0.55	86.7±11.5	84.0±6.15	66.7±1.89	70.2 ± 5.05	0.12	0.40
SMZ	$SMR-D_4$	139±2.87	122±8.26	149 ± 0.42	0.12	0.39	117±15.1	135±17.5	120±4.19	123±8.66	0.16	0.53
SMX	$SMX-D_4$	149±12.7	133±10.2	99.6±1.7	0.17	0.57	78.8±3.79	77.5±2.46	75.2±2.02	83.5±4.09	0.27	0.91
SMM	$SMX-D_4$	100±5.14	101±3.12	120±3.68	0.26	0.87	102±13.1	102 ± 6.82	104±9.54	108 ± 1.01	0.29	0.97
SPD	$SMR-D_4$	80.1 ± 8.06	83±5.18	102±2.12	0.13	0.43	95.7±7.78	61.1±10.9	66.8±8.81	77.8±6.22	0.11	0.35
SQX	$SMX-D_4$	117±6.94	118 ± 11.8	87±4.24	0.14	0.45	69.7±3.69	70.1±3.25	67.8±4.54	74.3±1.51	0.05	0.18
SX	SMX-D ₄	120±5.07	$110{\pm}11.8$	101±5.66	0.23	0.76	109 ± 8.74	105±1.15	101±0.76	94.9±1.7	0.14	0.46
STZ	SMR-D ₄	102±3.17	92.4±6.83	124±0.28	0.20	0.66	97.3±14.2	119±10.7	94.8±15.3	86.1±5.33	0.11	0.36
TMP	TMP-D ₃	102±6.9	91.6±7.38	104±1.56	0.04	0.15	94.3±4.48	104 ± 14.9	90.5±3.97	70.6 ± 8.05	0.13	0.43
CTC	$TC-D_6$	95.9±5.48	88.3±9.01	87.3±1.84	0.82	2.74	106±14.	122±27.5	96.0±11.5	73.1±3.53	0.91	3.04
DC	$TC-D_6$	96.6±9.84	89.9±15.5	86.9±2.12	0.29	0.95	103 ± 12.8	119±18.5	88.7±14.5	58.3±4	0.07	0.25
OTC	$TC-D_6$	135±14.4	118 ± 10.8	91.5±8.06	0.30	1.00	101±12.4	91.2±11.2	93.0±9.73	108±10.3	0.80	2.65
TC	$TC-D_6$	105 ± 7.51	106±13.9	99.4±0.28	0.68	2.28	89.5±15.9	82.9±3.44	89.7±4.48	101±1.94	1.00	3.34
CFX	CFX-D ₈	112±11.4	87.8±7.74	116±5.8	1.00	3.33	145±19.2	96.7±4.33	102±9.19	99.3±3.24	0.78	2.59
DAN	EFX- D ₅	81.9±21	66.4±5.07	74.8±6.11	0.32	1.07	113±17.8	113±14.3	112±10.6	65.2±3.2	1.56	5.21
DIF	EFX- D ₅	119±7.59	94.2±4.16	125±4.62	0.95	3.17	154±13.9	149 ± 21.8	137±7.11	107±6.73	0.76	2.54
EFX	EFX- D ₅	101±9.07	85.6±3.26	110±1.76	0.66	2.19	222±27.6	111±2.91	103±9.11	91.5±2.13	0.50	1.65
FL	EFX- D ₅	85.8±13.1	79.8±7.09	120±5.08	0.62	2.06	147±14.6	155±19.6	147±13.7	171±5.26	0.81	2.70
LFX	EFX- D ₅	79.2±13.0	76.9±10.1	119±2.72	0.71	2.38	249±7.6	158±23.3	188±11.4	108±11.8	0.35	1.18
MAR	EFX- D ₅	70.6±13.1	68.3±5.89	101±2.44	0.50	1.66	94.1±14.3	75.4±10.4	80.3±19.2	140 ± 4.49	0.68	2.27
NFX	CFX-D ₈	111±7.15	72.7±4.1	98.4±3.34	0.94	3.13	113±26.7	96.2±9.12	84.6±11.5	110±3.08	0.77	2.56
OFX	EFX- D ₅	_77.3±16.6	75.4±3.47	91.7±2.97	0.47	1.56	212±19.8	130±5.55	116±21.8	117±1.22	0.33	1.09

Table S7 Recoveries (n = 3), method detection limits (MDLs), and method quantitation limits (MQLs) of the antibiotics from surface water and sediment.

		-			-							
PEF	EFX- D ₅	104±14.2	86.4±3.59	106±5.29	0.80	2.68	103±6.67	94.4±22.3	77.0±4.34	79.7±2.78	0.87	2.92
SAR	CFX-D ₈	121±8.61	79.7±3.45	125±0.21	0.86	2.86	96.3±3.18	91.3±0.25	78.4±5.15	93.2±8.63	0.73	2.43
CAR	$TBD-D_4$	75.7±5.5	68±9.25	67±4.92	1.22	4.29	124±6	102±7.02	92.1±19.1	64.5±3.3	0.85	2.84
ATM	ETM- ¹³ C-D ₃	89.4±10.1	76.8±8.56	132±0.73	0.52	1.73	43.2±6.93	111±19.4	108±16.7	63±5.8	0.29	0.97
CTM	ETM- ¹³ C-D ₃	54.1±3.74	87.7±8.29	117±4.30	0.30	1.00	87.8±11.2	81.5±18.2	104±21.3	79.3±7.1	0.54	1.79
ETM-H ₂ O	ETM- ¹³ C-D ₃	56.4±2.31	53.1±3.42	141±3.64	0.36	1.19	85.1±13.5	65.3±11.2	99.0±11.0	83.9±4.77	0.72	2.41
LCM	ETM- ¹³ C-D ₃	63.7±9.47	71.4±7.10	110 ± 8.90	0.48	1.59	61.1±10.1	65.8±11.2	86.0±3.2	79.9±4.14	0.50	1.65
ODM	ETM- ¹³ C-D ₃	60.2±5.17	54.6 ± 8.95	135±8.27	0.08	0.26	60.8±11.3	119±9.33	105±12.7	67.2±10.5	0.23	0.77
RTM	ETM- ¹³ C-D ₃	82.7±3.87	84.8±5.11	98.4±2.38	0.19	0.62	57.6±11.5	86.5±12.5	96.1±12.9	101±4.32	0.74	2.47
TYL	ETM- ¹³ C-D ₃	57.3±6.69	95.8±7.59	140 ± 8.90	0.42	1.40	96.7±6.75	91.7±19.5	117±21	60.2 ± 0.88	1.40	4.65
SAL	TBD-D ₄	45.7±6.53	78.8±16.8	79.3±3.76	1.13	3.77	44.0 ± 7.72	141±16.3	190±47.3	112±1.16	1.94	6.45
NAR	$TBD-D_4$	58.6±5.28	85.1±19.6	102±13.1	0.60	2.00	80 ± 17	81.5±6.17	84.6±20.5	80±1.32	0.54	1.81
MON	TBD-D ₄	64.9±5.17	71.4±7.10	85.7±5.18	0.41	1.36	36.8±6.51	76.7±8.73	135±28.8	75.8±6.35	0.76	2.54
LIN	LIN-D ₃	123±2.21	110 ± 7.32	126±6.36	0.56	1.86	127±20.9	81.8±9.45	102±24.6	98.2±1.93	1.26	4.20
FF	CAP-D ₅	79.7±4.79	71.4±3.6	88.3±3.12	0.08	0.26	100±3.5	88.5 ± 3.02	94.5±1.13	95.4±3.24	0.10	0.34
CAP	CAP-D ₅	103±10.5	97.3±10.9	96.4±2.31	0.28	0.94	96.8±3.55	88.7±3.06	95.2±1.14	102 ± 2.99	0.05	0.18

^a Internal standards. ^b Mean(%)±standard deviation (%). >100% means matrix enhancement effect, <100% means matrix suppression effect. ^d Bold letters in the table represent those recoveries or matrix effect outside the range of 50-150%.

<u> </u>	Su	mmer	W	Vinter
Site	Mass in water (kg)	Mass in sediment (kg)	Mass in water (kg)	Mass in sediment (kg)
S1	3.06	117	7.44	46.8
S2	4.05	66.2	5.95	37.9
S 3	4.59	35.9	6.10	26.5
S4	4.84	40.1	8.17	64.9
S5	8.25	29.9	5.89	33.5
S 6	13.7	128	25.8	1,520
S 7	28.7	123	31.6	666
S 8	64.3	90.8	88.5	550
S9	0.20	14.9	0.17	21.3
S10	32.0	879	158	891
S11	22.3	181	18.9	305
S12	5.21	46.5	8.43	210
S13	25.7	124	37.3	1,330
S14	53.7	170	38.9	986
S15	0.25	10.3	0.12	89.3
S16	21.2	951	434	1,830
S17	19.2	329	93.0	205
S18	64.1	116	66.5	139
S19	27.6	251	27.6	432
S20	24.1	108	41.5	303
S21	54.6	98.1	46.7	2,700
S22	18.6	45.6	18.1	82.7
S23	22.5	45.7	16.8	221
S24	14.0	36.0	46.8	51.2
S25	1.59	145	2.75	40.1

 Table S8 Mass balance of antibiotics in the surface water and sediment of Lake Taihu in summer and winter

S26	11.1	133	7.79	189
S27	13.3	35.7	6.93	37.4
S28	8.13	c	5.19	
S29	27.6	10.2	19.7	
S30	19.4	0.00	14.5	37.4
S31	21.0	1.42	26.7	120
S32	11.2	5.65	16.8	213
All of the entire lake	650	4,370	1,330	13,400

^a Mass of antibiotics in the water around each site (kg)=total concentrations of antibiotics in the aqueous phase (ng/L)×water depth (m)×water area(m²)/1000,000,000; and the water depth and weighted water area at each site were provided in Table S2. ^b Mass of antibiotics in the sediment around each site (kg)=total concentrations of antibiotics in the sedimentary phase (ng/g)×sediment depth (m)×water area(m²)×sediment density (g/cm³)×water content of sediment (%)/1000,000; and sediment depth 0.2 m, sediment density 1.3 g/cm³, water content of sediment 50% were used and cited from Qin, 2008. ^{22 c} not available, because sediment samples at site S28 in summer were not sampled due to lush aquatic plants and thin sedimentary deposit thickness.

Site	SI	00	S	MZ	SMX	SN	4M	SPD	TI	MP	TC	DC	DNA	D	IF	E	FX	1	FL	LFX	М	AR	NFX	O	FX	PEF	SAR	ETM-H2O	RTM	FF
	May	Nov	May	Nov	May	May	Nov	May	May	Nov	May	Nov	Nov.	May	Nov.	May	Nov.	May	Nov.	May	May	Nov.	May	May	Nov.	May	May	May	May	Nov
S1	7.77	a	^a						156		10000			3100	31.4	5800		1310	44.6		1370		5440	5500	212	2990	6510			3.17
S2	5.84								123										353						538		3380			
S3	21.2								86.7															699						
S4	18.9								62.1							753														
S5	4.32								89.2							753				75.6										
S6									62.1							753			776											
S 7									73.4						729	753			2590											
S8																														
S9																														
S10			57.6			71.9			63.0	40.6										63.3										
S11																				152										
S12									102																					
S13	7.06	2.65																		184										
S14	2.81	5.40													3200		1180		2620						1530			2030		
S15									789																					
S16			41.6			66.6		195	93.4	14.6	347	18.4			3530				388			313							1810	0.18
S17	71.1		85.5	182	21.7	88.5	26.9		133	54.2		1.87																		0.5
S18	2.52								114																					
S19										489																				
S20																														
S21																														
S22																														
S23									236																					
S24									299																					
S25																														

Table S9 Pseudo-distribution coefficient of antibiotics in Lake Taihu during two seasons

S26		 	 	 	 	 	 214	 	 	 	 	 	 	 	 	
S27		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
S28		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
S29	2.94	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
S30		 	 	 	 	 	 	 	 	 	 	 	 	 	 	
S31	2.38	 	 	 	 	 	 	 	 	 574	 	 	 	 	 	
S32	10.1	 	 	 	 73.9	 	 	 	 	 	 	 	 	 	 	

^a Not available because this antibiotic was not detected in the water or sediment.

Compound	Country	Location	Aqueous	phase (ng/L	.)	Sedim	ent (µg/kg)		Reference
			Range	Median	Mean	Range	Median	Mean	•
Sulfonamides									
Sulfacetamide	China	Lake Taihu	ND-34.9	2.24		ND- <mql< td=""><td></td><td></td><td>In this study</td></mql<>			In this study
	China	Bosten Lake	11.56-48.26	15.41		<mql-1.25< td=""><td>3.81</td><td></td><td>[23]</td></mql-1.25<>	3.81		[23]
	China	Coastal environment of Dalian	ND-1.51	ND	0.33	ND-1.39	ND	0.13	[24]
	China	Liao River Basin	ND-12.25	ND	1.24	ND			[25]
Sulfachlorpyridazine	China	Lake Taihu	ND-9.52	ND		ND			In this study
	China	Lake Taihu	ND-89.4		27.1	ND-15.8		7.3	[26]
	China	Lake Chaohu	ND-4.6						[27]
	China	Inflowing rivers of Lake Chaohu	ND-1.6						[18]
	China	Huangpu River	3.2-58.3						[28]
	China	Coastal environment of Dalian	ND			ND			[15]
	China	Liao River Basin	ND-13.52	ND	0.98	ND			[16]
	USA	139 stream sites	ND						[29]
	USA	Cache La Poudre River	30		30	1.9-3.32		2.7	[30]
Sulfadiazine	China	Lake Taihu	ND-3.14	0.72		ND			In this study
	China	Lake Chaohu	ND-45.6						[18]
	China	Inflowing rivers of Lake Chaohu	ND-3.2						[18]
	China	Baiyangdian Lake	0.86-505	56.0	118	ND-2.07	ND	0.41	[31]
	China	Bosten Lake	2.88-37.77	10.54		<mql-4.46< td=""><td></td><td></td><td>[14]</td></mql-4.46<>			[14]
	China	Coastal environment of Dalian	ND-2.05	ND	0.19	ND-1.68	ND	0.50	[15]
	China	Huangpu River	1.4-40.6						[19]
	China	Huangpu River	4.9-112.5		53.6	0.07-0.71		0.4	[32]
	China	Yangze Estuary	0.3-71.8						[33]

Table S10 Occurrence of antibiotics in aquatic environment in the world

	China	The Yangtze Estuary and nearby				ND-0.469			[34]
		coastal areas							
	China	Pearl River	ND-336						[35]
	China	Pearl River	ND-26.9						[36]
	China	lower reach of the Pearl River	Up to 18.0			ND			[37]
	China	Victoria Harbour	ND						[26]
	China	Pearl River				ND-83.9	3.16		[38]
	China	Streams in Jianghan Plain	ND-37.4						[39]
	China	Hai River	3.1-52	38.8	32.7	ND			[40]
	China	Laizhou Bay	ND-0.43	ND	0.02				[41]
	China	Jiulongjiang River	<0.26-316.2	24.2	51.38				[42]
	China	Yellow River				ND-22	ND		[43]
	China	Hai River				ND-1.18	ND		[34]
	China	Liao River				ND-11	ND		[34]
	China	Streams with livestock farms	4.57-214			ND			[44]
Sulfadoxine	China	Lake Taihu	ND-210	7.99		ND-0.59			In this study
	China	Coastal environment of Dalian	ND-1.88	ND	0.33	ND			[15]
Sulfadimethoxine	China	Lake Taihu	ND			ND			In this study
	China	Lake Taihu	ND-43.3		11.9	ND-15.7		6.9	[17]
	China	Lake Chaohu	ND-8.8						[18]
	China	Inflowing rivers of Lake Chaohu	<mql< td=""><td></td><td></td><td></td><td></td><td></td><td>[18]</td></mql<>						[18]
	China	Baiyangdian Lake	ND			ND-0.20	ND	0.04	[22]
	China	Jiulongjiang River	<0.22-1.90	0.80	0.89				[33]
	China	Coastal environment of Dalian	ND-2.00	ND	0.13	ND			[15]
	China	Liao River Basin	ND-5.90	0.62	0.94	ND-0.97	ND	0.06	[16]
	Japan	Nationwide survey	ND-6.4	ND	0.45				[45]

	Japan	Tamagawa River	ND						[46]
	Vietnam	Urban drainage	ND						[37]
	Vietnam	Mekong River	ND						[37]
	USA	139 stream sites	Up to 60						[20]
	USA	Cache La Poudre River	10-40		20	1.7-6.8		3.8	[21]
Sulfamerazine	China	Baiyangdian Lake	ND			ND-2.47	ND	0.05	[22]
	China	The Yangtze Estuary and nearby				ND- <mql< td=""><td></td><td></td><td>[25]</td></mql<>			[25]
		coastal areas							
	China	Huangpu River	<mql< td=""><td></td><td></td><td>0.03-0.8</td><td></td><td>0.2</td><td>[23]</td></mql<>			0.03-0.8		0.2	[23]
	China	Coastal environment of Dalian	ND			ND-3.67	2.55	1.73	[15]
	China	Liao River Basin	ND			ND			[16]
	China	Streams in Jianghan Plain	ND-11.0						[30]
	Japan	Nationwide survey	ND-0.03	ND	ND2				[36]
	Japan	Tamagawa River	ND						[37]
	USA	139 stream sites	ND						[20]
	USA	Cache La Poudre River	10-60		20	2.3-6.8		4.8	[21]
Sulfamethazine	China	Lake Taihu	ND-6.69	0.47		ND-0.27	ND		In this study
	China	Lake Taihu	ND-654.0		252.7	ND-99.8		39.8	[17]
	China	Lake Chaohu	ND-9.9						[18]
	China	Inflowing rivers of Lake Chaohu	<mql-14.9< td=""><td></td><td></td><td></td><td></td><td></td><td>[18]</td></mql-14.9<>						[18]
	China	Baiyangdian Lake	ND-16.1	2.68	5.25	ND-6.92	1.08	1.47	[22]
	China	Huangpu River	2.0-623.3						[19]
	China	Huangpu River	19.9-389.4		188.9	0.2-2.7		1.2	[23]
	China	Yangze Estuary	0.50-89.1						[24]
	China	The Yangtze Estuary and nearby				<mql-4.84< td=""><td></td><td></td><td>[25]</td></mql-4.84<>			[25]
		coastal areas							

	China	Pearl River	ND-323						[26]
	China	Pearl River	ND-446						[27]
	China	Pearl River				ND-248	19.7		[29]
	China	lower reach of the Pearl River	Up to 218			Up to 3.24			[28]
	China	Victoria Harbour	ND						[26]
	China	Yellow River				ND			[34]
	China	Hai River				ND-5.67	ND		[34]
	China	Liao River				ND			[34]
	China	Hai River	ND-53.5	30.7	27.7	0.5-5.8	3.1	2.9	[31]
	China	Coastal environment of Dalian	ND-2.81	ND	0.34	ND-1.76	ND	0.26	[15]
	China	Liao River Basin	ND-15.91	2.37	3.55	ND-1.03	ND	ND	[16]
	China	Laizhou Bay	ND-1.5	ND	0.13				[32]
	China	Jiulongjiang River	< 0.28-775.5	39.55	170.86				[33]
	China	Streams in Jianghan Plain	ND-33.8						[30]
	China	Streams with livestock farms	63.8-101			4.16-5.34			[35]
	Japan	Nationwide survey	ND-62.9	ND	2.55				[36]
	Japan	Tamagawa River	ND						[37]
	Vietnam	Urban drainage	58-328	103	119				[37]
	Vietnam	Mekong River	15-28	19	20.3				[37]
	USA	Cache La Poudre River	20		20	1-13.7		4.7	[21]
	USA	139 stream sites	Up to 220						[20]
	France	Seine River	<10						[47]
	Germany	River waters and drainages	ND	ND					[48]
Sulfamethiazole	China	Coastal environment of Dalian	ND-1.34	ND	0.38	ND			[15]
Sulfamethoxazole	China	Lake Taihu	2.29-234	25.8		ND-0.46	ND		In this study
	China	Lake Taihu	ND-114.7		48.4	ND-49.3		16.1	[17]

China	Lake Chaohu	ND-171.6						[18]
China	Inflowing rivers of Lake Chaohu	2.5-95.6						[18]
China	Baiyangdian Lake	ND-940	121	240	ND-7.86	ND	0.28	[22]
China	Bosten Lake	1.12-13.28	5.91		ND			[14]
China	Huangpu River	4.9-55.2						[19]
China	Huangpu River	2.2-764.9		259.6	0.05-0.6		0.2	[23]
China	Yangze Estuary	0.3-56.8						[24]
China	The Yangtze Estuary and nearby				ND-1.13			[25]
	coastal areas							
China	Pearl River	ND-193						[26]
China	Pearl River	ND-616						[27]
China	Pearl River				ND- <loq< td=""><td>ND</td><td></td><td>[29]</td></loq<>	ND		[29]
China	lower reach of the Pearl River	Up to 37.6			ND			[28]
China	Victoria Harbour	ND						[26]
China	Yellow River	<loq-56< td=""><td></td><td></td><td></td><td></td><td></td><td>[49]</td></loq-56<>						[49]
China	Hai River	22.1-201	137	113.8	ND			[31]
China	Yellow River				ND			[34]
China	Hai River				ND			[34]
China	Liao River				ND- <loq< td=""><td>ND</td><td></td><td>[34]</td></loq<>	ND		[34]
China	Coastal environment of Dalian	ND-2.23	1.41	1.28	ND			[15]
China	Liao River Basin	ND-1483.9	59.75	104.9	ND-2.63	ND	ND	[16]
China	Laizhou Bay	1.5-82	13	19				[32]
China	Jiulongjiang River	0.05-58.3	10.73	15.98				[33]
China	Streams in Jianghan Plain	ND-13.4						[30]
China	Streams with livestock farms	3.58-11.9			ND			[35]
Japan	Nationwide survey	ND-33.9	1.1	4.85				[36]

	Japan	Tamagawa River	4-23	18.5	7				[37]
	Vietnam	Urban drainage	37-360	153	179				[37]
	Vietnam	Mekong River	20-33	22	26.3				[37]
	USA	Cache La Poudre River	40-320		110	1.2-1.9		1.6	[21]
	USA	139 stream sites	Up to 1900						[20]
	UK	Downstream of WWTPs	<50						[50]
	France	Arc River	ND						[51]
	France	Seine River	Up to 121						[38]
	Germany	Watersides in westphalia	40-200						[52]
	Germany	River waters and drainages	ND-480	30					[39]
	Spain	Llobregat River	0.2-1500						[53]
	Spain	Llobregat River	30-11920		1110				[54]
	Sweden	Hoje River	ND-10						[55]
	Italian	River Po	1.83-2.39		2.1				[56]
	Italian	River Arno	1.79-11.4		5.3				[47]
	Australia	Six river systems	ND-2000	8					[57]
Sulfamethoxypyridazine	China	Coastal environment of Dalian	ND-1.95	ND	0.23	ND-7.67	ND	1.49	[15]
	China	Liao River Basin	ND-8.04	ND	0.56	ND			[16]
Sulfameter	China	Coastal environment of Dalian	ND-1.92	ND	0.10	ND-56.65	ND	8.82	[15]
Sulfamonomethoxine	China	Lake Taihu	ND-85.8	5.58		ND-0.49	ND		In this study
	China	Baiyangdian Lake	ND-23.1	5.40	6.92	ND-0.50	ND	0.06	[22]
	China	Hai River	2.3-19.4	8.9	10.8	ND-0.9	ND	0.1	[31]
	China	Coastal environment of Dalian	ND-2.28	ND	0.39	ND-7.00	ND	1.63	[15]
Sulfapyridine	China	Lake Taihu	ND-1.13	ND		ND-0.17	ND		In this study
	China	Baiyangdian Lake	ND-85.0	2.58	13.0	ND-1.40	ND	0.16	[22]
	China	Huangpu River	1.14-57.4						[19]

	China	Huangnu Diver	ND 103 1		24.1	ND 6.6		17	[23]
	China	The Venetze Estuary and reaches	IND-103.1		24.1	MOL 0 12		1./	[25]
	China	The Yangize Estuary and hearby				<mql-9.12< td=""><td></td><td></td><td>[25]</td></mql-9.12<>			[25]
	China	Coastal areas							[20]
	China	Pearl River	ND 74 (ND- <loq< td=""><td></td><td></td><td>[29]</td></loq<>			[29]
	China	Pearl River	ND-/4.6	1.2	2.2		ND	0.5	[27]
	China	Hai River	ND-5.5	1.3	2.2	ND-2.0	ND	0.5	[31]
	China	Yellow River				ND			[34]
	China	Hai River				ND			[34]
	China	Liao River				ND			[34]
	China	Liao River Basin	ND-0.96	ND	ND	ND-0.68	ND	ND	[16]
	Japan	Nationwide survey	ND-144	1.95	15.2				[36]
	Japan	Tamagawa River	21-132	108	41.9				[37]
	Vietnam	Urban drainage	ND						[37]
	Vietnam	Mekong River	ND						[37]
Sulfaquinoxaline	China	Lake Taihu	ND			ND- <mql< td=""><td>ND</td><td></td><td>In this study</td></mql<>	ND		In this study
	China	Yangze Estuary	ND-23.5						[24]
	China	Huangpu River	ND-64.2		21.5	0.08-0.9		0.4	[23]
	China	The Yangtze Estuary and nearby				<mql-0.959< td=""><td></td><td></td><td>[25]</td></mql-0.959<>			[25]
		coastal areas							
	China	Liao River Basin	ND-14.59	ND	0.91	ND			[16]
Sulfathiazole	China	Lake Taihu	ND-8.18	ND		ND			In this study
	China	Lake Taihu	ND-134.5		45.9	ND-51.7		17.8	[17]
	China	Baiyangdian Lake	ND-1.38	ND	0.08	ND-5.94	0.57	0.64	[22]
	China	Huangpu River	ND-121.1		34.1	ND-0.6		0.2	[23]
	China	Yangze Estuary	0.03-5.23						[24]
	China	The Yangtze Estuary and nearby				ND- <mql< td=""><td></td><td></td><td>[25]</td></mql<>			[25]

		coastal areas							
	China	Streams in Jianghan Plain	ND-3.7						[30]
	China	Coastal environment of Dalian	ND-1.24	ND	0.34	ND-1.89	ND	0.09	[15]
	China	Liao River Basin	ND-7.5	ND	0.8	ND			[16]
	Japan	Nationwide survey	ND-0.02	ND	ND05				[36]
	Japan	Tamagawa River	ND						[37]
	Vietnam	Urban drainage	ND						[37]
	Vietnam	Mekong River	ND						[37]
	USA	139 stream sites	Up to 130						[20]
	USA	Cache La Poudre River	10-30		10	1.3-5.4		3.3	[21]
	Australia	Six river systems	ND-40	ND					[48]
Sulfisoxazole	China	Lake Taihu	ND			ND			In this study
	China	Lake Taihu	ND-61.4		44.4	ND-22.6		11.0	[17]
	China	Bosten Lake	3.34-10.36	5.39		ND- <mql< td=""><td><mql< td=""><td></td><td>[14]</td></mql<></td></mql<>	<mql< td=""><td></td><td>[14]</td></mql<>		[14]
	China	Coastal environment of Dalian	ND-2.01	ND	0.23	ND			[15]
Diaminopyrimidines									
Trimethoprim	China	Lake Taihu	ND-18.3	1.28		ND-1.09	ND		In this study
	China	Lake Taihu	ND-40.8		12.0	ND-39.3		9.3	[17]
	China	Pearl River	ND-605						[27]
	China	Yellow River				ND- <loq< td=""><td>ND</td><td></td><td>[34]</td></loq<>	ND		[34]
	China	Hai River				ND-5.63	ND		[34]
	China	Liao River				ND-9.84	0.93		[34]
	China	Laizhou Bay	1.3-330	18	53				[32]
	China	Streams in Jianghan Plain	ND-19.0						[30]
	China	Streams with livestock farms	6.22-19.2			ND-1.77			[35]
	Japan	Nationwide survey	ND-36	0.02	2.50				[36]

	Ionon	Tamagawa Piyor	10.54	20.5	12.7				[27]
	Japan		19-34	29.5	15.7				[37]
	vietnam	Urban drainage	15-46	28	29.9				[37]
	Vietnam	Mekong River	/-19	17.5	15.3				[3/]
	USA	139 stream sites	Up to 710						[20]
	Spain	Llobregat River	ND-35.6						[44]
	Spain	Llobregat River	20-470		140				[45]
	UK	Downstream of WWTPs	<10-42	<10	12				[41]
	UK	Estuaries	<4-569	<4					[58]
	France	Seine River	ND-45						[38]
	Sweden	Hoje River	<1-20						[46]
	Germany	River waters and drainages	ND-200	ND					[39]
	Germany	Watersides in westphalia	6-70 ng/L						[43]
	Australia	Six river systems	ND-150	3					[48]
Tetracyclines									
Chlortetracycline	China	Lake Taihu	ND-73.0	ND		ND-8.75	ND		In this study
	China	Lake Taihu	ND-142.5		67.9	ND-48.5		19.0	[17]
	China	Lake Chaohu	ND-4.0						[18]
	China	Inflowing rivers of Lake Chaohu	ND-4.2						[18]
	China	Bosten Lake	ND-3.11	1.03		4.62-17.28	10.41		[14]
	China	Huangpu River	ND-16.8						[19]
	China	Huangpu River	ND-46.7		3.6	ND-6.3		2.4	[23]
	China	Yangze Estuary	ND-3.5						[24]
	China	The Yangtze Estuary and nearby				<mql-12< td=""><td></td><td></td><td>[25]</td></mql-12<>			[25]
		coastal areas							
	China	Jiulongjiang River	2.81-766.51	9.98	97.52				[33]
	China	Streams in Jianghan Plain	ND-122.3						[30]

	China	Yellow River				ND			[34]
	China	Hai River				ND-10.9	ND		[34]
	China	Liao River				ND-32.5	ND		[34]
	China	Coastal environment of Dalian	1.01-3.00	1.23	1.49	ND			[15]
	China	Streams with livestock farms	ND-98.2			315-1010			[35]
	USA	139 stream sites	Up to 690						[20]
	USA	Cache La Poudre River	10-210		80	1.1-30.8		10.8	[21]
	Germany	River waters and drainages	ND	ND					[39]
	Australia	Six river systems	ND-600	3					[48]
Doxycycline	China	Lake Taihu	ND-947	ND		ND-6.09	<mql< td=""><td></td><td>In this study</td></mql<>		In this study
	China	Lake Chaohu	ND-42.3						[18]
	China	Inflowing rivers of Lake Chaohu	ND-3.5						[18]
	China	Bosten Lake	ND-4.92	2.06		<mql-9.96< td=""><td>4.23</td><td></td><td>[14]</td></mql-9.96<>	4.23		[14]
	China	Huangpu River	ND-46.9						[19]
	China	Huangpu River	ND-112.3		11.3	ND-6.3		2.4	[23]
	China	Yangze Estuary	ND-5.6						[24]
	China	The Yangtze Estuary and nearby				<mql-18.6< td=""><td></td><td></td><td>[25]</td></mql-18.6<>			[25]
		coastal areas							
	China	Coastal environment of Dalian	ND-1.56	ND	0.26	1.10-1.54	1.44	1.33	[15]
	China	Liao River Basin	ND-25.05	ND	1.38	ND-12.26	ND	2.00	[16]
	China	Streams with livestock farms	ND-12.6			35.8-444			[35]
	China	Streams in Jianghan Plain	ND-66.5						[30]
	China	Yellow River				ND			[34]
	China	Hai River				ND-7.0	ND		[34]
	China	Liao River				ND-2.8	ND		[34]
	USA	Cache La Poudre River	10-50		30	2.2-38.9		15.7	[21]

	USA	139 stream sites	ND						[20]
	Germany	River waters and drainages	ND	ND					[39]
	Australia	Six river systems	ND-400	ND					[48]
Oxytetracycline	China	Lake Taihu	ND-34.8	ND		ND-9.00	ND		In this study
	China	Lake Taihu	ND-72.8		44.2	ND-196.7		52.8	[17]
	China	Baiyangdian Lake	4.64-90.3		27.17	4.28-35.4		15.66	[59]
	China	Lake Chaohu	ND-2.9						[18]
	China	Inflowing rivers of Lake Chaohu	ND-16.5						[18]
	China	Bosten Lake	ND-6.6	2.99		4.61-20.67	7.79		[14]
	China	Huangpu River	11.5-84.5						[19]
	China	Huangpu River	ND-219.8		78.3	0.6-18.6		6.9	[23]
	China	Yangze Estuary	ND-22.5						[24]
	China	The Yangtze Estuary and nearby				0.305-14			[25]
		coastal areas							
	China	Pearl River				ND- 196	7.15		[29]
	China	Yellow River				ND-184	ND		[34]
	China	Hai River				ND-422	2.52		[34]
	China	Liao River				ND- 652	2.34		[34]
	China	Jiulongjiang River	2.75-456.67	36.91	117.97				[33]
	China	Coastal environment of Dalian	1.09-6.28	2.08	2.46	ND			[15]
	China	Liao River Basin	ND-741.85	ND	22.41	ND-384.59	3.71	29.21	[16]
	China	Streams in Jianghan Plain	ND-61.8						[30]
	China	Streams with livestock farms	33-60			497-214			[35]
	Japan	Streams with livestock farms	2-6800						[60]
	USA	Cache La Poudre River	10-1210		180	2.4-56.1		14.8	[21]
	USA	139 stream sites	Up to 340						[20]

	France	Arc River	ND-650						[42]
	Germany	River waters and drainages	ND	ND					[39]
	Italian	River Po	<1.19-1.82		1.1				[47]
	Italian	River Arno	<1.19		<1.19				[47]
	Australia	Six river systems	ND-100	ND					[48]
Tetracycline	China	Lake Taihu	ND-4.18	ND		ND-27.0	ND		In this study
	China	Lake Taihu	ND-87.9		43.2	ND-112.2		47.9	[17]
	China	Baiyangdian Lake	8.07-85.19		25.95	4.78-93.36		25.71	[50]
	China	Lake Chaohu	ND-17.8						[18]
	China	Inflowing rivers of Lake Chaohu	ND-1.9						[18]
	China	Bosten Lake	ND-4.92	2.06		<mql-9.96< td=""><td>4.23</td><td></td><td>[14]</td></mql-9.96<>	4.23		[14]
	China	Huangpu River	ND-113.9						[19]
	China	Huangpu River	ND-54.3		4.2	ND-21.7		3.5	[23]
	China	Yangze Estuary	ND-2.4						[24]
	China	The Yangtze Estuary and nearby				<mql-6.84< td=""><td></td><td></td><td>[25]</td></mql-6.84<>			[25]
		coastal areas							
	China	Pearl River				ND- 72.6	4.05		[29]
	China	lower reach of the Pearl River	Up to 13.1			Up to 7.13			[28]
	China	Yellow River				ND- 18	ND		[34]
	China	Hai River				1.06-135	2.0		[34]
	China	Liao River				ND-4.82	ND		[34]
	China	Coastal environment of Dalian	1.01-3.00	1.23	1.49	ND			[15]
	China	Liao River Basin	ND-28.65	ND	ND	ND-7.97	ND	0.98	[16]
	China	Jiulongjiang River	3.28-49.57	10.48	13.87				[33]
	China	Streams in Jianghan Plain	ND-137.4						[30]
	China	Streams with livestock farms	ND-8.73			13.7-56.3			[35]

	USA	Cache La Poudre River	10-30		20	1.1-102.7	17.9		[21]
	USA	139 stream sites	Up to 110						[20]
	Germany	River waters and drainages	ND	ND					[39]
	Australia	Six river systems	ND-80	ND					[48]
Fluoroquinolones									
Ciprofloxacin	China	Lake Taihu	ND			ND-46.5	3.76		In this study
	China	Lake Taihu	ND-43.6		8.8	ND-25.3		9.8	[17]
	China	Lake Chaohu	ND-23.2						[18]
	China	Inflowing rivers of Lake Chaohu	ND-21.0						[18]
	China	Baiyangdian Lake	ND-60.3	4.55	9.45	ND-46.0	ND	2.49	[22]
	China	Bosten Lake	17.33-112.3	39.22		21.18-213	76.51		[14]
	China	Huangpu River	<mql< td=""><td></td><td></td><td></td><td></td><td></td><td>[19]</td></mql<>						[19]
	China	Huangpu River	ND-34.2		2.7	ND			[23]
	China	Yangze Estuary	ND-2.3						[24]
	China	The Yangtze Estuary and nearby				<mql-42.9< td=""><td></td><td></td><td>[25]</td></mql-42.9<>			[25]
		coastal areas							
	China	Pearl River				ND-197	21.8		[29]
	China	Hai River	ND-19.7	13.4	11.3	ND-88.3	13.8	23.2	[31]
	China	Yellow River				ND-32.8	ND		[34]
	China	Hai River				2.05-1290	16.0		[34]
	China	Liao River				ND-28.7	ND		[34]
	China	Liao River Basin	ND-185.14	ND	11.6	ND-13.15	ND	ND	[16]
	China	Laizhou Bay	ND-66	25	31				[32]
	China	Streams in Jianghan Plain	ND-18.0						[30]
	China	Streams with livestock farms	ND-8.91			8.72-20.5			[35]
	USA	139 stream sites	Up to 30						[20]

	France	Arc River	ND-9660						[42]
	Germany	Watersides in westphalia	Up to 13						[43]
	Italian	River Po	1.32-16		8.8				[47]
	Italian	River Arno	<1.8-37.5		19				[47]
	Australia	Six river systems	ND-1300	ND					[48]
Danofloxacin	China	Lake Taihu	ND-12.2	ND		ND-34.1	ND		In this study
	China	Jiulongjiang River	<2.17-3.95	3.32	3.43				[33]
	France	Seine River	ND-19						[38]
Difloxacin	China	Lake Taihu	ND-40.4	ND		ND-79.0	1.27		In this study
	China	Lake Chaohu	ND-10.4						[18]
	China	Inflowing rivers of Lake Chaohu	<mql-12.4< td=""><td></td><td></td><td></td><td></td><td></td><td>[18]</td></mql-12.4<>						[18]
	China	Baiyangdian Lake	ND			ND			[22]
	China	Hai River	ND-3.4	ND	0.5	ND-16.9	2.3	5.0	[31]
	France	Seine River	<10						[38]
Enrofloxacin	China	Lake Taihu	ND-7.57	ND		ND-54.2	<mql< td=""><td></td><td>In this study</td></mql<>		In this study
	China	Lake Chaohu	ND-82.7						[18]
	China	Inflowing rivers of Lake Chaohu	ND-20.7						[18]
	China	Baiyangdian Lake	ND-4.42	1.31	1.26	ND-13.0	ND	0.46	[22]
	China	Bosten Lake	ND-15.22	6.03		3.42-19.96	8.6		[14]
	China	Huangpu River	<mql< td=""><td></td><td></td><td></td><td></td><td></td><td>[19]</td></mql<>						[19]
	China	Huangpu River	ND-14.6		2.8	ND-8.9		3.2	[23]
	China	Yangze Estuary	ND-4.8						[24]
	China	The Yangtze Estuary and nearby				<mql-4.84< td=""><td></td><td></td><td>[25]</td></mql-4.84<>			[25]
		coastal areas							
	China	lower reach of the Pearl River	ND			Up to 1.43			[28]
	China	Hai River	ND-1.0	ND	0.4	ND-69.7	15.5	19.8	[31]

	China	Yellow River				ND			[34]
	China	Hai River				ND-2.34	ND		[34]
	China	Liao River				ND			[34]
	China	Liao River Basin	ND-70.36	25.13	25.72	ND-25.67	ND	2.71	[16]
	China	Laizhou Bay	ND-7.6	ND	1.8				[32]
	China	Streams in Jianghan Plain	ND-53.1						[30]
	China	Streams with livestock farms	ND-2.45			21.3-137			[35]
	France	Seine River	<10						[38]
	Australia	Six river systems	ND-300	ND					[48]
Fleroxacin	China	Lake Taihu	ND-30.3	ND		ND-13.2	ND		In this study
	China	Baiyangdian Lake	ND-6.35	2.05	2.29	ND-6.69	ND	0.15	[22]
	China	Hai River	ND-7.3	1.3	2.2	ND-24.2	ND	5.3	[31]
	China	Streams with livestock farms	ND-4.48			ND			[35]
Lomefloxacin	China	Lake Taihu	ND-16.3	ND		ND-11.1	ND		In this study
	China	Lake Chaohu	ND-5.50						[18]
	China	Inflowing rivers of Lake Chaohu	ND-24.0						[18]
	China	Baiyangdian Lake	ND			ND-29.0	ND	0.98	[22]
	China	Hai River	ND-0.9	ND	0.1	ND-16.2	3.8	4.8	[31]
	China	Yellow River				ND			[34]
	China	Hai River				ND-298	1.67		[34]
	China	Liao River				ND-5.82	ND		[34]
	China	Streams in Jianghan Plain	ND-13.1						[30]
	China	Streams with livestock farms	ND			ND-2.78			[35]
	France	Seine River	<10						[38]
	Italian	River Po	< 0.31		< 0.31				[47]
	Italian	River Arno	< 0.31		< 0.31				[47]

Marbofloxacin	China	Lake Taihu	ND-16.7	ND		ND-8.93	ND		In this study
	China	Streams with livestock farms	ND-3.46			ND			[35]
Norfloxacin	China	Lake Taihu	ND- <mql< td=""><td></td><td></td><td>ND-12.2</td><td>ND</td><td></td><td>In this study</td></mql<>			ND-12.2	ND		In this study
	China	Lake Taihu	ND-6.5		4.3	ND-28.4		9.9	[17]
	China	Lake Chaohu	ND-70.2						[18]
	China	Inflowing rivers of Lake Chaohu	ND-107.4						[18]
	China	Baiyangdian Lake	ND-156	19.6	28.6	49.4-1140	255	267	[22]
	China	Baiyangdian Lake	3.00-97.00		31.6	104-550		274	[50]
	China	Huangpu River	ND-0.2			ND			[23]
	China	Yangze Estuary	ND-14.2						[24]
	China	The Yangtze Estuary and nearby				<mql-69.3< td=""><td></td><td></td><td>[25]</td></mql-69.3<>			[25]
		coastal areas							
	China	Pearl River				ND-1120	88.0		[29]
	China	Pearl River	ND-174						[27]
	China	Pearl River	ND-251						[26]
	China	lower reach of the Pearl River	Up to 136			Up to 20.5			[28]
	China	Victoria Harbour	ND-28.1						[26]
	China	Yellow River	<loq-300< td=""><td></td><td></td><td></td><td></td><td></td><td>[40]</td></loq-300<>						[40]
	China	Hai River	ND-129	58.5	65.5	3.9-141	56.6	67.2	[31]
	China	Liao River Basin	ND-256.03	ND	49.03	ND-52.48	7.14	11.7	[16]
	China	Yellow River				ND-114	8.34		[34]
	China	Hai River				ND-5770	32.0		[34]
	China	Liao River				ND-176	3.32		[34]
	China	Laizhou Bay	7.5-103	38	40				[32]
	China	Streams in Jianghan Plain	ND-134.2						[30]
	China	Jiulongjiang River	<1.13-6.70	3.75	3.57				[33]

	China	Streams with livestock farms	ND-14.8			19.9-27.6			[35]
	USA	139 stream sites	Up to 120						[20]
	France	Seine River	ND-163						[38]
	Australia	Six river systems	ND-1150	30					[48]
Ofloxacin	China	Lake Taihu	ND-26.3	ND		ND-12.2	ND		In this study
	China	Lake Taihu	ND-82.8		32.2	ND-52.8		16.5	[17]
	China	Lake Chaohu	ND-182.7						[18]
	China	Inflowing rivers of Lake Chaohu	1.5-383.4						[18]
	China	Baiyangdian Lake	2.02-9.43		4.33	18.62-71.51		39.73	[50]
	China	Bosten Lake	1.3-32.24	9.29		18.39-94.1	40.99		[14]
	China	Huangpu River	<mql< td=""><td></td><td></td><td></td><td></td><td></td><td>[19]</td></mql<>						[19]
	China	Huangpu River	ND-28.5		6.5	ND-12.4		4.1	[23]
	China	Yangze Estuary	ND-12.4						[24]
	China	The Yangtze Estuary and nearby				<mql-458.2< td=""><td></td><td></td><td>[25]</td></mql-458.2<>			[25]
		coastal areas							
	China	Pearl River	ND-108						[26]
	China	Pearl River				ND- 1560	156		[29]
	China	lower reach of the Pearl River	Up to 15.8			Up to 13.7			[28]
	China	Victoria Harbour	ND-16.4						[26]
	China	Yellow River	<loq-264< td=""><td></td><td></td><td></td><td></td><td></td><td>[40]</td></loq-264<>						[40]
	China	Hai River	9.1-95.2	30.9	36.4	ND-64.6	33.4	36.8	[31]
	China	Yellow River				ND-123	3.07		[34]
	China	Hai River				ND-653	10.3		[34]
	China	Liao River				ND-50.5	3.56		[34]
	China	Liao River Basin	ND-632.52	ND	37.93	ND-51.36	ND	5.62	[16]

	China	Laizhou Bay	ND-6.5	ND	0.24				[32]
	China	Streams in Jianghan Plain	ND-135.1						[30]
	China	Streams with livestock farms	ND-14.5			17.7-235			[35]
	Spain	Llobregat River	<lod-488.4< td=""><td></td><td></td><td></td><td></td><td></td><td>[44]</td></lod-488.4<>						[44]
	Spain	Llobregat River	190-8770		2110				[45]
	Italian	River Po	0.65-18.06		10.9				[47]
	Italian	River Arno	<1.4-10.88		5				[47]
	France	Seine River	ND-55						[38]
Pefloxacin	China	Lake Taihu	ND-323	ND		ND-9.12	ND		In this study
	China	Streams with livestock farms	ND			4.45-20.5			[35]
Sarafloxacin	China	Lake Taihu	ND-1.43	ND		ND-15.6	ND		In this study
	China	Baiyangdian Lake	ND-28.2	11.0	9.30	ND			[22]
	China	Hai River	ND-11.9	ND	4.4	ND-35.9	ND	8.8	[31]
	China	Jiulongjiang River	<1.90-7.09	3.71	3.89				[33]
	USA	139 stream sites	ND						[20]
	France	Seine River	<10						[38]
Carbadox	China	Lake Taihu	ND			ND			In this study
	USA	139 stream sites	ND						[20]
Macrolides									
Azithromycin	China	Lake Taihu	ND-8.11	ND		ND- <mql< td=""><td></td><td></td><td>In this study</td></mql<>			In this study
	China	Streams in Jianghan Plain	0.3-5.6						[30]
	China	Laizhou Bay	ND-1.20	ND	0.14				[32]
	Japan	Nationwide survey	ND-44.5	ND05	1.94				[36]
	Japan	Tamagawa River	43-448	153	89.1				[37]
	Vietnam	Urban drainage	ND						[37]
	Vietnam	Mekong River	ND						[37]

	France	Arc River	ND			ND-265			[42]
	Spain	Llobregat River	<mdl< td=""><td></td><td></td><td></td><td></td><td></td><td>[45]</td></mdl<>						[45]
Clarithromycin	China	Lake Taihu	ND			ND			In this study
	China	Streams in Jianghan Plain	0.6-15.8						[30]
	Japan	Nationwide survey	ND-233	1	16.1				[36]
	Japan	Tamagawa River	55-254	168	71.5				[37]
	Vietnam	Urban drainage	ND						[37]
	Vietnam	Mekong River	ND						[37]
	France	Arc River	ND-1560			ND-3.82			[42]
	Germany	River waters and drainages	ND-260	ND					[39]
	Italian	River Po	0.89-2.19		1.7				[47]
	Italian	River Arno	6.7-44.76		25.4				[47]
Erythromycin	China	Baiyangdian Lake	ND-121	4.94	19.5	ND-3.04	0.42	0.59	[22]
	China	Huangpu River	0.4-6.9		3.9	1.5-24.6		10.2	[23]
	China	Yangze Estuary	0.05-45.4						[24]
	China	The Yangtze Estuary and nearby				<mql-51.5< td=""><td></td><td></td><td>[25]</td></mql-51.5<>			[25]
		coastal areas							
	China	Hai River	3.1-10.3	5.6	6.5	ND-5.8	ND	1.5	[31]
	China	Laizhou Bay	0.9-8.5	2.4	2.6				[32]
	Japan	Nationwide survey	ND-27.8	0.01	2.55				[36]
	Spain	Llobregat River	ND-362.5						[44]
	Spain	Llobregat River	10-70		30				[45]
	Italian	River Po	0.78-4.62		2.9				[47]
	Italian	River Arno	2.88-8.12		5.4				[47]
	Australia	Six river systems	Not quantified						[48]
Erythromycin-H ₂ O	China	Lake Taihu	ND-4.66	ND		ND- <mql< td=""><td>ND</td><td></td><td>In this study</td></mql<>	ND		In this study

	China	Lake Taihu	ND-624.8		109.1	ND-120.3		27.7	[17]
	China	Pearl River	ND-636						[26]
	China	Pearl River				ND-385	24.4		[29]
	China	Pearl River	ND-2070						[27]
	China	lower reach of the Pearl River	Up to 121			Up to 14.0			[28]
	China	Victoria Harbour	ND-5.2						[26]
	China	Yellow River	<loq-102< td=""><td></td><td></td><td></td><td></td><td></td><td>[40]</td></loq-102<>						[40]
	China	Yellow River				ND-49.8	1.28		[34]
	China	Hai River				ND-67.7	<loq< td=""><td></td><td>[34]</td></loq<>		[34]
	China	Liao River				ND- 40.3	3.61		[34]
	China	Liao River Basin	ND-2834.36	50.07	165.41	ND-175.38	ND	11.45	[16]
	China	Streams in Jianghan Plain	ND-381.5						[30]
	Japan	Nationwide survey	ND-128	1.1	8.13				[36]
	Japan	Tamagawa River	21-120	78	32.9				[37]
	Vietnam	Urban drainage	29-41	35.6	36.5				[37]
	Vietnam	Mekong River	9-12	10.5	10.5				[37]
	USA	139 stream sites	Up to 1700						[20]
	USA	Cache La Poudre River	20-450		120	1.3-25.6		10	[21]
	Germany	Watersides in westphalia	Up to 200						[43]
	Germany	River waters and drainages	ND-1700	150					[39]
	Italian	River Po	1.66-5.31		3.7				[47]
	Italian	River Arno	9.68-30.52		17.9				[47]
	Australia	Six river systems	Not quantified						[48]
Leucomycin	China	Lake Taihu	ND			ND- <mql< td=""><td>ND</td><td></td><td>In this study</td></mql<>	ND		In this study
Oleandomycin	Australia	Six river systems	ND-20	ND					[48]
Roxithromycin	China	Lake Taihu	ND-1.80	ND		ND-3.56	ND		In this study

China	Lake Taihu	ND-218.3		50.7	ND-45.2		16.9	[17]
China	Baiyangdian Lake	ND-155	2.64	27.2	ND-302	36.4	64.9	[22]
China	Huangpu River	0.13-9.93						[19]
China	Huangpu River	0.2-2.2		0.9	0.3-4.1		1.9	[23]
China	Yangze Estuary	0.05-8.20						[24]
China	The Yangtze Estuary and nearby				<mql-3.61< td=""><td></td><td></td><td>[25]</td></mql-3.61<>			[25]
	coastal areas							
China	Pearl River				ND-133	24.7		[29]
China	Pearl River	ND-2260						[27]
China	Pearl River	ND-169						[26]
China	lower reach of the Pearl River	<mql-1.5< td=""><td><mql< td=""><td>0.38</td><td>Up to 13.5</td><td></td><td></td><td>[28]</td></mql<></td></mql-1.5<>	<mql< td=""><td>0.38</td><td>Up to 13.5</td><td></td><td></td><td>[28]</td></mql<>	0.38	Up to 13.5			[28]
China	Victoria Harbour	ND-30.6						[26]
China	Yellow River	<loq-95< td=""><td></td><td></td><td></td><td></td><td></td><td>[40]</td></loq-95<>						[40]
China	Hai River	1.5-24.3	10	10.5	ND-40.2	5.9	10.4	[31]
China	Yellow River				ND-6.8	ND		[34]
China	Hai River				ND- 11.7	2.29		[34]
China	Liao River				ND-29.6	5.51		[34]
China	Liao River Basin	ND-740.99	6.75	36.47	ND-229.31	3.10	21.31	[16]
China	Laizhou Bay	ND-0.43	ND	0.02				[32]
China	Streams in Jianghan Plain	0.6-9.8						[30]
Japan	Tamagawa River	13-43	28	11.7				[37]
Vietnam	Urban drainage	ND						[37]
Vietnam	Mekong River	ND						[37]
USA	Cache La Poudre River	ND			1.1-5.9		2.1	[21]
USA	139 stream sites	Up to 180						[20]
Germany	River waters and drainages	ND-560	ND					[39]

	Australia	Six river systems	ND-350	9					[48]
Tylosin	China	Baiyangdian Lake	ND-1.88	ND	0.10	ND			[22]
	China	Streams with livestock farms	ND-5.55			ND			[35]
	USA	139 stream sites	Up to 280						[20]
	USA	Cache La Poudre River	50			1.1-9.3		3	[21]
	Italian	River Po	<0.77		< 0.77				[47]
	Italian	River Arno	<0.77		< 0.77				[47]
	Germany	Watersides in westphalia	90 ng/L						[43]
	Australia	Six river systems	ND-60	1					[48]
Ionophores									
Narasin	China	Lake Taihu	ND			ND- <mql< td=""><td>ND</td><td></td><td>In this study</td></mql<>	ND		In this study
Salinomycin	Australia	Six river systems	ND-150	ND					[48]
Monensin	Australia	Six river systems	ND-150	2					[48]
Polypeptides									
Bacitracin	Australia	Six river systems	ND						[48]
Lincosamides									
Lincomycin	China	Lake Taihu	ND-53.8	3.00		ND- <mql< td=""><td>ND</td><td></td><td>In this study</td></mql<>	ND		In this study
	USA	139 stream sites	Up to 730						[20]
	Italian	River Po	3.72-7.47		5.7				[47]
	Italian	River Arno	5.34-10.92		8.1				[47]
	Australia	Six river systems	ND-50	1					[48]
Clindamycin	Germany	Watersides in westphalia	3-90 ng/L						[43]
	Australia	Six river systems	ND-10	1					[48]
Chloramphenicol derivatives									
Chloramphenicol	China	Yangze Estuary	ND-8.63						[24]
	China	Huangpu River	ND-28.3						[19]

	China	Huangpu River	ND-3.9		0.4	ND-0.7		0.3	[23]
	China	The Yangtze Estuary and nearby				<mql< td=""><td></td><td></td><td>[25]</td></mql<>			[25]
		coastal areas							
	China	Pearl River	ND-266						[26]
	China	Victoria Harbour	ND						[26]
	China	Coastal environment of Dalian	ND-1.14	ND	0.33	ND-2.31	ND	1.02	[15]
	Germany	River waters and drainages	ND-60	ND					[39]
Florfenicol	China	Lake Taihu	ND-963	ND		ND- <mql< td=""><td>ND</td><td></td><td>In this study</td></mql<>	ND		In this study
	China	Yangze Estuary	0.45-89.5						[24]
	China	Huangpu River	6.85-46.6						[19]
	China	Huangpu River	ND-241.1		116.3	ND-1.3		0.5	[23]
	China	The Yangtze Estuary and nearby				<mql< td=""><td></td><td></td><td>[25]</td></mql<>			[25]
		coastal areas							
	China	Coastal environment of Dalian	ND-2.27	0.51	0.53	ND-1.21	ND	0.43	[15]
Thiampheniol	China	Huangpu River	ND-0.6		0.5	ND-1.3		0.4	[23]
β-Lactams									
Amoxicillin	China	Pearl River	ND						[26]
	China	Victoria Harbour	ND						[26]
	Italian	River Po	<2.08		<2.08				[47]
	Italian	River Arno	3.57-9.91		5.7				[47]
	Australia	Six river systems	ND-200	ND					[48]
Cloxacillin	Germany	River waters and drainages	ND	ND					[39]
	Australia	Six river systems	ND						[48]

Class	Water (N=32) ^a	Sediment (N=30) ^a
SAs+TMP	t=0.154, df=55.096, p=0.878 ^b	Z=-5.352, p=0.000 °
TCs	Z=-0.433, p=0.665 °	Z=-2.968, p=0.003 °
FQs	Z=-1.853, p=0.064 °	Z=-3.904, p=0.000 °
MLs	Z=-0.254, p=0.800 °	Z=-5.590, p=0.000 °
IPs	d	d
LIN	Z=-6.847, p=0.000 °	d
FF	Z=-4.639, p=0.000 °	d
All of antibiotics	Z=-0.900, p=0.368 °	Z=-3.386, p=0.001 °

Table S11 Statistical analyses on temporal variations of antibiotics in water and sediment of Lake Taihu

^a The concentrations of antibiotics were tested by Kolmogorov-Smirnov Test for normal. When P>0.05, the distribution of this group of data was normal. When the data were normally distributed, independent t-test was used, and test statistic values and p value were provided. When the data were not normally distributed, Mann Whitney U test was used, and test statistic values and p values were provided. For all the statistical analyses about steroids in water, degrees of freedom are 31; for all the statistical analyses about steroids in sediment, degrees of freedom are 29. When the data with the value less than MQL, a half of MQL was substituted for the value; for the data of ND (not detected, the value less than MDL), a half of MDL was used to run statistical analyses. ^b The data are normally distributed. Independent-samples t-test was used, and test statistic values (t and df) and p value were provided. ^c The data are not normally distributed. Mann Whitney U test was used, and test statistic values were provided. ^f Bold means temporal variation is statistically significant (P<0.05). ^d This kind of class of antibiotics were not detected in surface water or sediment of Lake Taihu.

SAs, sulfonamides; TMP, trimethoprim; TCs, tetracyclines; FQs, fluoroquinolones; MLs, macrolides; IPs, polyether ionophores; LIN, lincomycin; FF, florfenicol.

		May ^a		November ^a
Class	D ²	Significant variable		Significant variable
	K-	(Standardized Coefficient)	K-	(Standardized Coefficient)
SAs+TMP	0.128	TOC(0.358) ^b	c	
TCs	0.162	TOC(0.402)		
FQs	0.198	TOC(0.445)		
MLs				
IPs				
LIN				
FF				

Table S12 Multiple linear regression analyses for the sediment properties (TOC and texture) and concentrations of antibiotics in the sediments of Lake Taihu

^a When the data with the value less than MQL, a half of MQL was substituted for the value; for the data of ND (not detected, the value less than MDL), a half of MDL was used to run statistical analyses. ^b TOC: total organic matter, %; Texture: sand, silt and clay, %. ^c--: multiple linear regression equation fitted was found "not significant".

SAs, sulfonamides; TMP, trimethoprim; TCs, tetracyclines; FQs, fluoroquinolones; MLs, macrolides; IPs, polyether ionophores; LIN, lincomycin; FF, florfenicol.

References

- 1. A. Jelić, M. Petrović and D. Barceló, *Talanta*, 2009, **80**, 363-371.
- L.-J. Zhou, B.-B. Zhang, Y.-G. Zhao and W. U. Qinglong, *Sci Total Environ*, 2016, DOI: 10.1016/j.scitotenv.2016.03.059.
- 3. B. Q. Qin, P. Z. Xu, Q. L. Wu, L. C. Luo and Y. L. Zhang, *Hydrobiologia*, 2007, **581**, 3-14.
- 4. C. S. Y. (Chinese), *Changzhou Statistical Yearbook* 2014 (Chinese), 2014, http://www.cztjj.gov.cn/html/tjj/2015/OEJCMFCP_0113/12154.html.
- H. S. Y. (Chinese), Hangzhou Statistical Yearbook 2014 (Chinese) 2014, http://www.hzstats.gov.cn/web/ShowNews.aspx?id=nlmlzcu%2Bjb0=
- 6. H. S. Y. (Chinese), *Huzhou Statistical Yearbook 2014 (Chinese)*, 2014, http://www.hustats.gov.cn/hustats/html/tjnj2014/2002.html.
- 7. J. S. Y. (Chinese), Jiaxing Statistical Yearbook 2014 (Chinese), 2014, http://www.jxstats.gov.cn/tjnj/Def.asp?cdate=2014
- S. S. Y. (Chinese), Suzhou Statistical Yearbook 2014 (Chinese), 2014, http://www.sztji.gov.cn/tjnj/2014/indexch.htm.
- W. S. Y. (Chinese), Wuxi Statistical Yearbook 2014 (Chinese), 2014, http://tj.wuxi.gov.cn/ztzl/tjnj/index.shtml.
- 10. V. K. Balakrishnan, K. A. Terry and J. Toito, *J Chromatogr A*, 2006, **1131**, 1-10.
- 11. Z. M. Qiang and C. Adams, *Water Res*, 2004, **38**, 2874-2890.
- 12. A. K. Sarmah, M. T. Meyer and A. B. A. Boxall, *Chemosphere*, 2006, **65**, 725-759.
- 13. P. Sukul and M. Spiteller, in *Reviews of Environmental Contamination and Toxicology, Vol 187*, ed. G. W. Ware, 2006, vol. 187, pp. 67-101.
- 14. A. L. Batt, I. B. Bruce and D. S. Aga, *Environ Pollut*, 2006, **142**, 295-302.
- 15. S. Thiele-Bruhn, *Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung* Und Bodenkunde, 2003, **166**, 145-167.
- 16. J. Tolls, *Environ Sci Technol*, 2001, **35**, 3397-3406.
- 17. Y. Pico and V. Andreu, *Anal Bioanal Chem*, 2007, **387**, 1287-1299.
- 18. N. Watanabe, B. A. Bergamaschi, K. A. Loftin, M. T. Meyer and T. Harter, *Environ Sci Technol*, 2010, **44**, 6591-6600.
- M. Hansen, E. Bjorklund, K. A. Krogh and B. Halling-Sorensen, *Trac-Trend Anal Chem*, 2009, 28, 521-533.
- 20. E. P. Company, *NADA*, 1989.
- 21. A. B. A. Boxall, P. Johnson, E. J. Smith, C. J. Sinclair, E. Stutt and L. S. Levy, *J Agr Food Chem*, 2006, **54**, 2288-2297.
- 22. B. Q. Qin, Springer, 2008, 1-36, 152-174.
- 23. X. N. Lei, J. J. Lu, Z. L. Liu, Y. B. Tong and S. M. Li, *Environ Sci Pollut R*, 2015, **22**, 1670-1678.
- 24. G. S. Na, X. D. Fang, Y. Q. Cai, L. K. Ge, H. M. Zong, X. T. Yuan, Z. W. Yao and Z. F. Zhang, *Mar Pollut Bull*, 2013, **69**, 233-237.
- Y. Bai, W. Meng, J. Xu, Y. Zhang and C. Guo, *Environmental Science-Processes & Impacts*, 2014, 16, 586-593.
- 26. J. Xu, Y. Zhang, C. B. Zhou, C. S. Guo, D. M. Wang, P. Du, Y. Luo, J. Wan and W. Meng, *Sci Total Environ*, 2014, **497**, 267-273.
- 27. J. Tang, T. Z. Shi, X. W. Wu, H. Q. Cao, X. D. Li, R. M. Hua, F. Tang and Y. D. Yue, Chemosphere,

2015, **122**, 154-161.

- 28. L. Jiang, X. Hu, D. Yin, H. Zhang and Z. Yu, *Chemosphere*, 2011, **82**, 822-828.
- D. W. Kolpin, E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaugg, L. B. Barber and H. T. Buxton, *Environ Sci Technol*, 2002, **36**, 1202-1211.
- 30. S. C. Kim and K. Carlson, *Environ Sci Technol*, 2007, **41**, 50-57.
- 31. W. H. Li, Y. L. Shi, L. H. Gao, J. M. Liu and Y. Q. Cai, *Chemosphere*, 2012, **89**, 1307-1315.
- 32. K. Chen and J. L. Zhou, *Chemosphere*, 2014, **95**, 604-612.
- C. X. Yan, Y. Yang, J. L. Zhou, M. Liu, M. H. Nie, H. Shi and L. J. Gu, *Environ Pollut*, 2013, 175, 22-29.
- 34. H. Shi, Y. Yang, M. Liu, C. X. Yan, H. Y. Yue and J. L. Zhou, *Mar Pollut Bull*, 2014, **83**, 317-323.
- 35. W. H. Xu, G. Zhang, X. D. Li, S. C. Zou, P. Li, Z. H. Hu and J. Li, *Water Res*, 2007, **41**, 4526-4534.
- 36. J.-F. Yang, G.-G. Ying, J.-L. Zhao, R. Tao, H.-C. Su and Y.-S. Liu, *J Environ Sci Heal B*, 2011, **46**, 272-280.
- X. M. Liang, B. W. Chen, X. P. Nie, Z. Shi, X. P. Huang and X. D. Li, *Chemosphere*, 2013, 92, 1410-1416.
- 38. J.-F. Yang, G.-G. Ying, J.-L. Zhao, R. Tao, H.-C. Su and F. Chen, *The Science of the total environment*, 2010, **408**, 3424-3432.
- 39. L. Tong, S. Huang, Y. Wang, H. Liu and M. Li, *Sci Total Environ*, 2014, **497**, 180-187.
- 40. L. H. Gao, Y. L. Shi, W. H. Li, J. M. Liu and Y. Q. Cai, *J Environ Monitor*, 2012, **14**, 1248-1255.
- 41. R. J. Zhang, G. Zhang, Q. Zheng, J. H. Tang, Y. J. Chen, W. H. Xu, Y. D. Zou and X. X. Chen, *Ecotox Environ Safe*, 2012, **80**, 208-215.
- 42. X. Zhang, D. Zhang, H. Zhang, Z. Luo and C. Yan, *Environ Sci Pollut R*, 2012, **19**, 1392-1404.
- L.-J. Zhou, G.-G. Ying, J.-L. Zhao, J.-F. Yang, L. Wang, B. Yang and S. Liu, *Environ Pollut*, 2011, 159, 1877-1885.
- 44. L.-J. Zhou, G.-G. Ying, S. Liu, R.-Q. Zhang, H.-J. Lai, Z.-F. Chen and C.-G. Pan, *Sci Total Environ*, 2013, **444**, 183-195.
- 45. A. Murata, H. Takada, K. Mutoh, H. Hosoda, A. Harada and N. Nakada, *Sci Total Environ*, 2011, **409**, 5305-5312.
- 46. S. Managaki, A. Murata, H. Takada, B. C. Tuyen and N. H. Chiem, *Environ Sci Technol*, 2007, **41**, 8004-8010.
- 47. F. Tamtam, F. Mercier, B. Le Bot, J. Eurin, Q. T. Dinh, M. Clement and M. Chevreuil, *Sci Total Environ*, 2008, **393**, 84-95.
- 48. R. Hirsch, T. Ternes, K. Haberer and K. L. Kratz, *Sci Total Environ*, 1999, **225**, 109-118.
- 49. W. H. Xu, G. Zhang, S. C. Zou, Z. H. Ling, G. L. Wang and W. Yan, *Water Environ Res*, 2009, **81**, 248-254.
- 50. D. Ashton, M. Hilton and K. V. Thomas, *Sci Total Environ*, 2004, **333**, 167-184.
- 51. J. Feitosa-Felizzola and S. Chiron, *J Hydrol*, 2009, **364**, 50-57.
- 52. T. Christian, R. J. Schneider, H. A. Farber, D. Skutlarek, M. T. Meyer and H. E. Goldbach, *Acta Hydroch Hydrob*, 2003, **31**, 36-44.
- 53. V. Osorio, R. Marce, S. Perez, A. Ginebreda, J. L. Cortina and D. Barcelo, *The Science of the total environment*, 2012, **440**, 3-13.
- 54. A. Ginebreda, I. Muñoz, M. L. de Alda, R. Brix, J. López-Doval and D. Barceló, *Environ Int*, 2010, **36**, 153-162.
- 55. D. Bendz, N. A. Paxeus, T. R. Ginn and F. J. Loge, J Hazard Mater, 2005, 122, 195-204.

- 56. E. Zuccato, S. Castiglioni, R. Bagnati, M. Melis and R. Fanelli, *J Hazard Mater*, 2010, **179**, 1042-1048.
- 57. A. J. Watkinson, E. J. Murby, D. W. Kolpin and S. D. Costanzo, *Sci Total Environ*, 2009, **407**, 2711-2723.
- 58. K. V. Thomas and M. J. Hilton, *Mar Pollut Bull*, 2004, **49**, 436-444.
- 59. D. M. Cheng, X. H. Liu, L. Wang, W. W. Gong, G. N. Liu, W. J. Fu and M. Cheng, *Sci Total Environ*, 2014, **476**, 266-275.
- 60. Y. Matsui, T. Ozu, T. Inoue and T. Matsushita, *Desalination*, 2008, **226**, 215-221.