Supplementary Content

Sorption Selectivity of Birnessite Particle Edges: a d-PDF Analysis of

Cd(II) and Pb(II) Sorption by δ -MnO₂ and Ferrihydrite

Case M. van Genuchten¹, Jasquelin Peña^{1*}

¹Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland

*corresponding author: Jasquelin Peña University of Lausanne Lausanne, CH-1015 +41 21 692 44 51 jasquelin.pena@unil.ch

1. High-energy X-ray Scattering and Differential Pair Distribution Function Analysis.

For high-energy X-ray scattering experiments, up to 20 mg of air-dried homogenized solids were tightly packed into 3 cm long capillary tubes with inside diameter of 0.3 mm and sealed with epoxy ¹. A mineral blank sample for each sorption series was also prepared as described above without the addition of Cd(II) or Pb(II). Several exposures lasting 0.5-5 s were taken and summed for each sample, for a total detection time of 5-10 min per sample. An empty capillary tube and a CeO₂ standard (NIST 647b) were measured to aid in background subtraction and X-ray calibration, respectively.

The total structure function, S(Q), was extracted from the raw 1D plots of scattering intensity versus scattering angle with the program PDFgetX2². Following previous approaches ³⁻⁶, the chemical formulas of MnO₂ and Fe(OH)₃ with varying water contents were used to correct for Compton scattering in samples containing δ -MnO₂ and Fh, respectively. The chemical formula also included the mol fraction of sorbed metals based on wet chemical measurements. The PDF was obtained by direct Fourier transformation of S(Q)with a Q_{max} value of 21 Å⁻¹. In a separate d-PDF study ⁷, we reported the results of a systematic analysis of the effects of varying i) the chemical formula used to correct for Compton scattering and ii) the Fourier-transform range on the PDF peak positions and relative intensities. This sensitivity analysis showed that the relative peak intensities and positions of the PDF are robust at R-values above 1.0 - 1.5 Å. All d-PDFs were R-averaged over normalization ripples with a moving average of over R-space of $\Delta R = 2\pi/\Delta Q = 0.3$ Å following similar procedures ^{8,9}.

2. Determination of PDF Instrumental Resolution of pair distribution functions.

The method used to synthesize Goe in our study yields primary crystallites larger than 90 Å in size ¹⁰. Accordingly, the decay in the Goe PDF at R > 2.5 nm is considered due to

instrumental resolution. Thus, to obtain the instrumental resolution parameter, Q_{damp} , which is used in the d-PDF calculations, we fit the decay of peak intensity with R in the Goe PDF using PDFgui². In the fit of the Goe PDF, the starting structure was based on the model of Gualtieri and Venturelli, (1999)¹¹ and the scale factor, unit cell parameters (*a*, *b*, *c*), isotropic displacement parameters (U_{ISO}), and correlated atomic motion parameter (δ) were refined over the R-range 1-20 Å. A Q_{damp} value of approximately 0.054 was returned by the refinement, which is in good agreement with previous studies using a similar rapid acquisition beam line set-up and detector geometry ^{12, 13}. Consequently, Q_{damp} was set at 0.054 for all d-PDF calculations.

	Atomic Postions	$U_{Cd/Pb}$	$U_{Fe/Mn}$	U ₀₁	U _{O2}	Q_{broad}	δ	d _p (Å)
MnO_2	Lanson et al. ¹⁴	-	а	а	а	-	0.07 ^b	40 ^b
Fh	Michel et al. ¹⁵	-	0.0032 ^c	0.014 ^c	-	0.34 ^d	0.32 ^d	20 ^c
CdO_6	Weil ¹⁶	0.0095 ^e	-	0.012 ^e	-	-	-	-
PbO ₆	Kwon et al. ¹⁷ (MnO ₂)	0.0133^{f}	-	0.02^{f}	-	-	-	-
PbO ₃	Ye et al. ¹⁸ (Fh)	0.0133 ^f	-	0.02^{f}	-	-	-	-

Table S1: Summary of structural parameters used in the d-PDF calculations

The (-) symbol indicates parameters that were not included in the calculations. The Q_{damp} value obtained by the refinement of the Goe PDF was held constant at 0.055 for all calculations. Hydrogen atoms were not included in the d-PDF calculations.

a. Refinement of δ -MnO₂ PDF ⁶. Anisotropic U values were used in the calculation: $U_{Mn11} = U_{Mn22} = 0.0012$, $U_{Mn33} = 0.0021$, $U_{011} = U_{022} = 0.0014$, $U_{033} = 0.033$.

b. Refinement of δ -MnO₂ PDF ⁵.

c. Crystal structure of Fh¹⁵.

d. Refinement of Fh PDF⁴.

e. Crystal structure $Cd_3(SiO_3)_3$ ¹⁶.

f. Crystal structure of cerrusite ¹⁸.

Figure S1: Total structure functions of mineral blanks and sorption samples. The appearance of broad humps in the scattering at 3 nm⁻¹ may be due to changes in sheet stacking.

Figure S2: Pair distribution functions of all sorption samples and mineral blanks prior to d-PDF extraction.

Figure S3: Comparison of Ca(II), Cd(II), and Pb(II) sorption isotherms for δ -MnO₂.

- 1. K. W. Chapman, Loading samples I: Preparing capillaries, https://www.youtube.com/watch?v=xgljkMqSsA, (accessed April 1, 2012).
- 2. C. Farrow, P. Juhas, J. Liu, D. Bryndin, E. Bozin, J. Bloch, T. Proffen and S. Billinge, *Journal of Physics-Condensed Matter*, 2007, **19**.
- 3. A. Cismasu, F. Michel, J. Stebbins, C. Levard and G. Brown, *Geochim Cosmochim Ac*, 2012, **92**, 275-291.
- 4. C. M. van Genuchten, J. Peña, S. E. Amrose and A. J. Gadgil, *Geochim Cosmochim Ac*, 2014, **127**, 285-304.
- 5. M. Zhu, C. Farrow, J. Post, K. Livi, S. Billinge, M. Ginder-Vogel and D. Sparks, *Geochim Cosmochim Ac*, 2012, **81**, 39-55.
- 6. A. Manceau, M. Marcus, S. Grangeon, M. Lanson, B. Lanson, A. Gaillot, S. Skanthakumar and L. Soderholm, *Journal of Applied Crystallography*, 2013, **46**, 193-209.
- 7. C. M. van Genuchten and J. Pena, Chem. Geol., 2016, 429, 1-9.
- 8. R. Harrington, D. B. Hausner, N. Bhandari, D. R. Strongin, K. W. Chapman, P. J. Chupas, D. S. Middlemiss, C. P. Grey and J. B. Parise, *Inorg Chem*, 2010, **49**, 325-330.
- 9. W. Li, R. Harrington, Y. Tang, J. Kubicki, M. Aryanpour, R. Reeder, J. Parise and B. Phillips, *Environ Sci Technol*, 2011, **45**, 9687-9692.
- 10.P. Weidler, S. Hug, T. Wetche and T. Hiemstra, *Geochim Cosmochim Ac*, 1998, **62**, 3407-3412.
- 11.A. Gualtieri and P. Venturelli, Am Mineral, 1999, 895-904.
- 12.F. Michel, S. Antao, P. Chupas, P. Lee, J. Parise and M. Schoonen, *Chem Mater*, 2005, **17**, 6246-6255.
- 13.C. M. van Genuchten, A. J. Gadgil and J. Peña, Environmental Science and Technology, 2014.
- 14.B. Lanson, V. Drits, Q. Feng and A. Manceau, Am Mineral, 2002, 87, 1662-1671.
- 15.F. M. Michel, L. Ehm, S. M. Antao, P. L. Lee, P. J. Chupas, G. Liu, D. R. Strongin, M. A. A. Schoonen, B. L. Phillips and J. B. Parise, *Science*, 2007, **316**, 1726-1729.
- 16.M. Weil, Acta Crystallographica Section E-Structure Reports Online, 2005, 61, 1102-1104.
- 17.K. Kwon, K. Refson and G. Sposito, *Geochim Cosmochim Ac*, 2010, 74, 6731-6740.
- 18.Y. Ye, J. Smyth and P. Boni, Am Mineral, 2012, 97, 707-712.