1	Supplementary Information of
2	Highly time resolved chemical characterization of submicron organic aerosols
3	at a polluted urban location
4	Authors: N.V.S Bharath Kumar ¹ , Abhishek Chakraborty ¹ , S.N.Tripathi ^{1, 2*} and Deepika
5	Bhattu ¹
6	Author affiliation: 1. Department of Civil Engineering Indian Institute of Technology, Kanpur
7	2. Centre of Environmental Science and Engineering, CESE, IIT Kanpur
8 9	*Corresponding author(s) E-mail: snt@iitk.ac.in
10	
11	Figures: S1-S9
12	Page: S1-S8
13	Tables: S1
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

27 Fig. S1: AMS vs SMPS mass concentration plot to justify the choice of CE value of 0.5. SMPS

28 mass is obtained from volume concentration by assuming a density of 1.4 g/cc as reported in

29 previous studies ^{1,2} from this location.

30

Fig. S2: *f*44 vs *f*60 plot to demonstrate the oxidation of biomass burning organic aerosol. Grey dashed line denotes the background *f*60 value taken from Cubison et al., $(2011)^3$.

35 1. Organic PMF Diagnostics:

50 Fig.S3: Diagnostic information for the PMF analysis.

- _

No. of factors	Remarks
<5	No HOA or SVOOA factor was identified, one HOA like factor with
	hydrocarbon dominated mass spectra also has higher m/z 60 signals.
	Several factors have identical mass spectra with very similar O/C
	ratios. Some key m/z 's like, 43,44 and 60 have high residuals.
5	Still, no clear HOA and SVOOA factors were seen. One HOA looks
	alike factor has high O/C ratio and m/z 44 signals. m/z 60 still have a
	high residual in spite of 3 BBOA factors.
6 (Chosen solution)	One clear HOA factor was identified along with one oxygenated POA
	factor. Types of primary BBOA factors were now reduced to 2.
	Significant reduction in residuals of key m/z 's was observed.
7	BBOA factors now started splitting but without any change in m/z 's

	residuals or diurnal patterns
> 8	Now, OOA factors were also started splitting.

58 Table S1: Rationale of choosing optimum PMF factors.

59

60 Fig. S4: Comparison between inter/external tracers and the different OA factors.

62 Figure S5 (a): Factor profiles of 5 factor PMF solution.

64 Figure S5 (b): Factor profiles of 5 7 factor PMF solution.

77

75 Fig. S8: Van Krevelen diagram (H/C vs. O/C plot) showing the difference in the slopes of OA

76 evolution from HPE (High pollution events) and LPE (Low pollution events).

