1 2 2	Sustainability of Renewable Fuel Infrastructure: A Screening LCA Case Study of Anti-Corrosive, Graphene Oxide Epoxy Liners in Steel Tanks for Storage of Biodiesel and its Blends	
3 4 5	Govinda Chilkoor ¹ , Venkata K.K. Upadhyayula ^{2*,} Venkataramana Gadhamshetty ^{1,4*,} Nikhil Koratkar ³ , Mats Tysklind ²	
6 7	¹ Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD 57701, USA	
8	² Department of Chemistry (Environmental Chemistry), Umea University, SE 90187, Umea, Sweden	
9 10	³ Mechanical and Nuclear Engineering and Material Science and Engineering ⁴ Surface Engineering Research Center, South Dakota School of Mines and Technology, 501 F. St. Joseph Street, Rapid	
11	City, SD 57701, USA	
12		
13		
14	Corresponding Author1	
15 16	V. K. K. Upadhyayula, PhD Assistant Professor, Green Technologies and Env. Economics Platform	
10	Department of Chemistry	
18	Umea University, SE 90187	
19 20	Umea, Sweden Email: krishna unadhyayula@umu se	
20		
21	Corresponding Author2	
22 23	V. Gadnamsnetty, PhD Department of Civil and Environmental Engineering	
24	South Dakota School of Mines and Technology	
25 26	Rapid City, SDA	
20		
27		
28 20		
30		
31 32		
33 24		
34 35		
36 37		
38		
39	Contents:	
40	— / Pages	
41 42	- 2 Supplementary Tables	
42	— 2 Supplementary rables	
43 44		
45		
	1	

47 48	Figure S1. Block Diagram Showing Life Cycle Stages of Incumbent System
48 49 50	Figure S2. Contribution analysis of GOE coating solution required for 30 m2 of steel tank interior
51 52 53	Figure S3. Contribution analysis of Incumbent System per Functional Unit
54 55 56	List of Tables Table S1 LCI Data of SGO (1 wt%)-silane composite solution per functional unit
57	Table 51. Let Data of 560 (1 wi/d) shalle composite solution per functional antennas
58 59	Table S2. LCI Data of GO (1 wt%)-PVK composite solution per functional unit
60	
61 62	
63 64	
65 66	
67	
68 69	
70 71	
72	
73 74	
75 76	
77 78	
78 79	
80 81	
82 83	
84	
85 86	
87 88	
89	
90 91	
92 93	
94	
95 96	
97 98	
99	
100	

Life Cycle Stages of the Incumbent System 101 **S1**.

105

Figure S1. Block Diagram Showing Life Cycle Stages of Incumbent System (Coating of 400 µm DFT + Addition of 125 ppm of Triazine Biocide)

For the incumbent system, the internal surface of steel sheet is surface prepared and shot 108 blasted prior to application of the solvent-free epoxy (SFE) coating. The SFE is then spray 109 coated on the steel surface and dried in the air. The LCI data for the composition of the SFE 110 coating is constructed using the commercial literature for the biodiesel tank liners.¹ The tank 111 coated with the SFE liner is commissioned on an industrial site for storing biodiesel or its 112 blends. The lifetime of the coating (20 years) is identical to the lifetime of the tank. Triazine 113 (125 ppm) is added to biodiesel to prevent microbial growth and subsequent biofilm growth. 114 The procedures for calculating the amount of SFE coating per functional unit (30 m^2) is given 115 below. 116

117

118 S1.1 Amount of SFE coating solution required for the Incumbent system

119	• Theoretical Spread Rate (TSR) (m ² /L)	= (Vol. Solids * 10)/(DFT)
120		$=(1000)/400 = 2.5 \text{ m}^2/\text{ L}$
121	• Practical Spread Rate (PSR) (m ² /L)	= TSR* Transfer Efficency (Spray Coating)
122		$= 2.5 * 0.68 = 1.7 \text{ m}^2/\text{ L}$
123	• Usage Rate (UR) (l/m ²)	$= 1/PSR = 0.588 L/m^2$

124	• Amount of coating solution per functional unit	$(30 \text{ m}^2) = 30*0.588 \text{ L} = 17.64 \text{ L}$
125	• Density of the coating solution	= 1.4 kg/ L
126	• Amount of coating solution (in kg)	= 17.64 liters * 1.4 kg/ L = 24.7 kg
127	• Weight ratio of Resin: Hardener	= 80:20
128	• Amount of Resin	= 24.7*0.8 = 19.75 kg
129	• Amount of Hardener	= 24.696*0.2 = 4.93 kg
130		
131	S2. Inventory Data Calculations for GOE Li	ner
132 133	S2.1. Calculating Amount of GOE Solution pe	r Functional Unit.
134	• Theoretical Spread Rate (TSR) (m ² /l)	= (Vol. Solids * 10)/(DFT)
136		$= (600)/200 = 3 \text{ m}^2/\text{L}$
137	• Practical Spread Rate (PSR) (m ² /l)	= TSR* Transfer Eff. (Spray Coating)
138		$= 3 * 0.68 = 2.04 \text{ m}^2/\text{L}$
139	• Usage Rate (UR) (l/m ²)	$= 1/PSR = 0.49 L/m^2$
140	• Amount of coating solution per functional unit	$(30 \text{ m}^2) = 30*0.4901 \text{ L} = 14.70 \text{ L}$
141	• Volume of NMP Solvent in Coating	= 14.70*0.4 = 5.88 L
142	• Amount of NMP Solvent (kg)	= 5.88 L *1.03 kg/ L (Density of NMP)
143		= 6.076 kg
144	• 97% of the solvent is recovered and recycled ba	ack into the system. This amounts to 5.89 kg
145	• Amount of makeup solvent	= 0.186 kg.
146	• 3% of solvent emitted as VOC	= 0.186 kg.
147	• Volume of solids in coating solution	= 8.82 liters
148	• Density of the solids	= 1.17 kg/l
149	• Amount of solids in kg.	= 8.82 liters * 1.17 kg/L = 10.31 kg

150	• Amount of Bisphenol A Resin in Solids	= 70% = 10.31*0.7 = 7.22 kg
151	• Amount of IPA	= 10.31*0.29 = 2.989 kg.
152	• Amount of Hardener	= 10.31*0.01 = 0.1031 kg.

153

154

155 **S2.2.** Power input for batch applications is calculated based on the following empirical formula 156 developed by Feng.²

157 158

$$W_{input}\left(\frac{KWh}{l}\right) = \frac{Power \ of \ Sonotrode \ (W) \ * \ treatment \ time(seconds)}{3.6E + 06\left(\frac{J}{KWh}\right) \ * \ volume \ of \ treated \ material \ (liters)}}$$
159

161 Our study calculated the power requirements based on experimental conditions reported by

162 Rajabi et al³. In this study, the authors used UIP 1000 hdT Ultrasonicator⁴ with 70% amplitude

- 163 which means the sonotrode power = 700 watts
- 164 The treatment time is 60 min. = 60 * 60 = 3600 seconds
- 165 Volume of treated solution = 1 liters.
- 166 Thus the power is calculated as

$$W_{input}\left(\frac{KWh}{l}\right) = \frac{700*60*60}{3.6E+06\left(\frac{J}{KWh}\right)*1 \ liter} = 0.7 \ KWh/l$$
167 (1)

168

A recent study conducted by Kashaba et al.⁵ has reported the energy density for dispersing MWCNT in the epoxy resin using ultrasonication for 30 mins is 810 Watt-second/ml. This is equivalent to 0.45 KWh/L for 60 min. This value for the ultrasonication energy therefore matches with the 0.7 KWh/L estimated from Equation (1) in this study.

- 173
- 174
- 175 176
- 177

178	
179	
180	52 I CI Data for Sumthasis of Antifoulant and Antimianshiel Tan Coats
181	55. LCI Data for Synthesis of Anthousant and Antimicropial Top Coats
182	
183	S3.1. LCI Data for SGO-Silane Composite Coating Solution
184	
185	It is assumed that the SGO with a dry film thickness (DFT) of 60 µm and 60% solids
186	(v/v) is applied as a top coat on the GOE liner. Based on this assumption, the amount of coating
187	solution required /functional unit (i.e. 30 m ² of coating area) is 4.41 liters. The corresponding
188	LCI data is shown in Table S1. The 1 wt% SGO-silane solution is prepared according to the
100	
189	experimental procedure described in literature ⁶⁻⁸
109	experimental procedure deservoed in incluture.

190 Table S1 LCI Data of SGO (1 wt%)-silane composite solution per functional unit

Inputs	Amount
Material Inputs	
Silane functionalized GO (SGO is 1% by weight in total solids)	8.82 g
Silane Solution	3.53 kg.
Deionized Water	617.5 g.
Acetic Acid	227 g
Isopropanol solvent (makeup 3%)	22.05 g
Solvent Recovery Burdens	706 g
Energy Inputs	
Energy Consumption for Mixing	3.08 KWh

191

192 S3.1. LCI Data of GO-PVK Coating Solution

193

It is assumed that the GO-PVK with DFT of 60 μ m and 60% (v/v) is applied as a top coat on the GOE liner. Based on this assumption, the coating solution required per functional unit (i.e. 30 m² of the interior surface with the GOE liner) is 4.41 liters. The corresponding LCI data is shown in Table S2. The 1 wt% GO-PVK solution is prepared according to experimental procedure described in literature.⁹⁻¹¹

199

Table S2 LCI Data of GO (1 wt%)-PVK composite solution per functional unit

Inputs	Amount	
Material Inputs		
GO Dispersion in DI Water (1% by wt. in total solids)	31.75 g	
Poly Vinyl Carbazole (PVK)	3.144 kg.	
Tetrahydrofuran (THF) solvent (makeup3%)	48.51 g.	

Internally Normalized Impact Scores % 50% 0% GWP HH-CP HH-NCP REP EP ODP ETXP SFP FFDP AP (Kg SO2 eq) (CTUh) (PM2.5 eq) (Kg CFC 11eq) (Kg CO2 eq) (CTUh) (Kg N eq) (CTUe) (Kg O3 eq) (MJ Surplus)

🗳 Graphene Oxide 🔳 BPA Epoxy Resin 🔲 Isopropylamine 🖾 Solvent Burdens (Makeup& Recovery) 🔲 Electricity (Mixing & Ultrasonication)

204

205 Figure S2.Contribution analysis of GOE coating solution required for 30 m² of steel tank interior

206

207 S5. Contribution Analysis of Incumbent System

- 208
- The incumbent system consists of 400 µm thick (DFT) solvent free novolac epoxy 210 liner for corrosion protection and a maintenance dosage of 125 ppm (active 211 ingredient concentration) of triazine biocide addition.
- For one year 2.5 kg of biocide needed for 10,000 liters of biodiesel storage. For 20 years, 50 kg is needed.
- 214 215

