Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Wood combustion particles induce adverse effects to normal and diseased airway epithelia

Manuel Krapf, Lisa Künzi, Sandrine Allenbach, Emily A. Bruns, Ilaria Gavarini, Imad El-Haddad, Jay G. Slowik, André S.H. Prévôt, Luka Drinovec, Griša Močnik, Lutz Dümbgen, Matthias Salathe, Nathalie Baumlin, Constantinos Sioutas, Urs Baltensperger, Josef Dommen, Marianne Geiser

Table of Contents

Table S1. Mass loadings of chemical fractions in the smog chamber during cell exposures.

- **Table S2.** Particle dose in the human tracheobronchial (TB) tract at different ambient PM concentrations.
- **Table S3.** Numeric values of biological responses of cell cultures at 24 h after aerosol exposure.
- **Table S4.** Evaluation of different regression models of toxicity of chemical particle fractions to bronchial epithelia.
- Figure S1. Experimental set-up to estimate particle deposition on cell cultures.
- Figure S2. Reactive oxygen species (ROS) normalized to total aerosol mass during each cell exposure.
- **Figure S3.** Mass spectra of particles in the smog chamber and after the Versatile Aerosol Concentration Enrichment System (VACES).
- **Figure S4.** Particle deposition efficiency in the aerosol deposition chamber without (w/o) and with electrical field.

References

Experiment al conditions	Particl e type	Averaged mass loading [µg m⁻³]								
		ОМ	eBC	PAHs	NO ₃	SO₄	NH₄	CI	Total mass	
Day 1, AL	primar y	217.2	34.2	8.7	8.8	1.9	1.8	0.1	272.7	
	aged	137.7	13.4	2.0	7.1	1.3	2.6	0.0	164.1	
Day 2, AL	primar y	54.8	46.6	1.9	5.2	1.0	0.9	0.1	110.5	
	aged	72.7	19.2	0.9	4.9	1.0	2.0	0.0	100.7	
Day 3, HL	primar y	35.7	42.2	6.3	4.8	1.1	0.6	0.0	90.7	
	aged	115.3	15.3	2.6	10.0	2.9	3.9	0.0	150.0	
Day 4, HL	primar y	13.4	58.2	1.9	4.7	0.6	0.6	0.0	79.4	
	aged	15.4	15.4	0.3	1.4	1.1	0.8	0.0	34.4	

Mass loadings of chemical fractions in the smog chamber during cell exposures

Total mass loading represents the averaged sum of all chemical fractions. AL: average wood load; HL: high wood load; OM: organic matter; eBC: equivalent black carbon; PAHs: polycyclic aromatic hydrocarbons; NO₃: nitrate; SO₄: sulfate; NH₄: ammonium; CI: chloride.

Particle dose in the human tracheobronchial (TB) tract at different ambient PM concentrations.

		Particle count median diameter		
		Primary, 180 nm ^a	Aged, 250 nm ^a	
Particle density [g cm ⁻¹]		1.00	1.00	
Tidal volume, V_{T} [m ³]		0.00065	0.00065	
Breathing frequency, <i>f</i> [min ⁻¹] ^{b, c}		12	12	
Inhaled air volume/h, $adult [m^3]^{b, c}$		0.45	0.45	
Inhaled air volume/24h, adult [m³]		10.8	10.8	
Surface area TB tract [cm ²] ^d		2471	2471	
Deposition efficiency ^{b, c}		0.078	0.066	
Ambient mass concentration [µg m ⁻³]	20			
Mass/surface area TB/24h [ng cm ⁻²]		6.8	5.8	
Ambient mass concentration [µg m ⁻³]	100			
Mass/surface area TB/24h [ng cm ⁻²]		34	29	
Ambient mss concentration [µg m ⁻³]	400			
Mass/surface area TB/24h [ng cm ⁻²]		137	115	
Ambient mass concentration [µg m ⁻³]	1000			
Mass/surface area TB/24h [ng cm ⁻²]		341	288	

a: Monodisperse aerosol with geometric standard deviation of 1.00 assumed; b: 1; c: 2; d: 3

Numeric values of biological responses of cell cultures at 24 h after aerosol exposure.

Exposure	Cell model											
-	Normal			Asthmatic			CF			BEAS-2B		
Day/aeroso I	Cytotoxicit y (%)	IL-6 (pg/mL)	IL-8 (pg/mL)	Cytotoxicit y (%)	IL-6 (pg/mL)	IL-8 (pg/mL)	Cytotoxicit y (%)	IL-6 (pg/mL)	IL-8 (pg/mL)	Cytotoxicit y (%)	IL-6 (pg/mL)	IL-8 (pg/mL)
D1/AL-prim	8.0 10.2 12.1	214 91.3 182	12539 7691 9437	 	258 477 483	23747 23322 16493	25.2 20.6 25.6	567 176 499	9858 15169 10912	19.2 15.1 21.5	1015 1467 1561	1894 1055 1104
D1/AL-aged	9.9 8.6 15.0	229 122 170	11825 8859 13833	 9.5 2.4	116 58.2 103	21895 28280 13529	25.0 13.1 12.2	228 94.7 128	11834 14039 17954	16.9 15.4 20.1	1993 1483 1769	1891 1170 1806
D2/AL-prim	14.3 19.3 	86.8 161 	8794 7601 	 		 	20.1 16.5 	230 185 	10423 9391 	15.7 16.5 	1752 1552 	1738 2732
D2/AL-aged	12.4 11.5 	225 234 	7704 8519 	3.5 7.1	73.8 129 	19674 29311 	10.7 10.9	101 68.9 	9297 5729 	 	 	
D3/p-free	7.4 6.7 6.7	89.1 111 169	8279 9662 9879	4.6 	58.6 167 	14725 13258 	10.1 6.1 9.0	293 160 242	8060 9067 7222	7.9 21.4 17.5	127 663 700	166 946 984
D3/HL-prim	10.7 11.9 13.9	102 262 137	13772 16200 6884	1.5 5.6 	0.02 274 	0.02 10535 	20.3 18.5 25.8	273 118 258	12579 7240 10866	34.0 30.6 33.3	2071 1755 1679	1757 1491 1754
D3/HL-aged	15.4 14.6 14.1	170 115 158	11338 5069 5150	4.5 5.8 	155 168 	14121 14527 	26.7 20.7 15.7	221 156 256	8646 9662 10204	41.0 31.1 29.8	2215 1100 1019	949 716 669
D4/HL-prim	16.9 16.0 	117 128 	9376 5530 	5.1 5.0 	232 56.6 	21455 19817 	24.4 25.3	92.4 84.3 	7087 5805 	13.3 13.5 	407 64.3	301 120
D4/HL-aged	11.4 11.3 	48.2 42.7	6240 5533 	3.4 2.6	31.8 21.3 	16570 11047	14.9 18.6 	187 99.4 	8426 7236 	22.8 24.9 	2028 2091 	2564 2143

Cytotoxicity, measured as percentage of total lactate dehydrogenase (LDH) apically released. Interleukin (IL)-6 and IL-8 release, assessed in the basal culture medium. Fully differentiated cultures of human bronchial epithelia derived from cells of normal, asthmatic and cystic fibrosis [CF]) donors plus the BEAS-2B cell line were simultaneously exposed to the aerosol. Data are presented as individual values of distinct cell cultures. For graphical illustration see Fig. 4 in the main manuscript. D1-4: Day of experiment; AL: average wood load, HL: high wood load; prim: primary particles; aged: aged particles; p-free: particle-free air control.

Evaluation of different regression models of toxicity of chemical particle fractions to bronchial epithelia.

Biomarker & Adjusted R ² (explained variance) for different regression model								dels
cell model	ОМ	eBC	PAHs	SO ₄	ROS	OM,	OM, eBC	Full model ^a
						eBC ^a	PAHs, SO ₄ ª	
	0.454	0.011	0.40	0.000	0.00	0 4 4 4 *	0.000	0.500
Normai	0.151	0.011	0.12	0.000	0.06	0.141	0.330	0.506
Asthmatic	0.011	0.016	0.000	0.000	0.000	0.000	0.000	0.000
CF	0.084	0.000	0.069	0.063	0.296	0.210	0.235	0.201
							0.604**	0.854
BEAS-2B	0.000	0.000	0.114	0.187	0.000	0.000***		
IL-6								
Normal	0.123	0.068	0.001	0.029	0.000	0.071	0.169	0.267
Asthmatic	0.000	0.101	0.123	0.163	0.238	0.373	0.431	0.531
CF	0.000	0.094	0.122	0.000	0.071	0.249	0.322	0.478
BEAS-2B	0.015	0.000	0.000	0.194	0.133	0.000**	0.165**	0.116
IL-8								
Normal	0.000	0.000	0.244	0.004	0.000	0.000	0.249	0.197
Asthmatic	0.124	0.042	0.128	0.000	0.000	0.061	0.429	0.466
CF	0.278	0.254	0.047	0.000	0.000	0.259	0.319	0.325
							0.000***	0.000
BEAS-2B	0.000	0.000	0.000	0.013	0.021	0.000***		

Values are adjusted R^2 for each cell model and biological end point for single and combinations of explaining variables. a: Residuals were tested for a significant influence of day of experiment. Depending on these tests, the entries are marked with * ($p \le 0.05$), ** ($p \le 0.01$), *** ($p \le 0.001$). CF: cystic fibrosis; IL: interleukin; OM: organic matter; eBC: equivalent black carbon; PAHs: polycyclic aromatic hydrocarbons; SO₄: sulfate; ROS: reactive oxygen species.

Fig. S1 Experimental set-up to estimate particle deposition on cell cultures. Particle mass concentration of wood combustion emissions in the smog chamber was continuously measured with a scanning mobility particle sizer (SMPS). An additional SMPS (SMPS-2) measuring at different positions was used to determine aerosol deposition in the deposition chamber and on cells. ① When SMPS-2 bypassed the deposition chamber, a comparison of the two SMPS reveals particle losses in aerosol delivery tubes. ② SMPS-2 measuring after the deposition chamber without electrical field yields particle losses in the deposition chamber with and without electrical field results in particle deposition due to the electrical field.

Fig. S2 Reactive oxygen species (ROS) normalized to total aerosol mass during each cell exposure. ROS content of primary and aged particles was determined from particles sampled on Teflon filters simultaneously to cell exposures. D: day; AL: average wood load; HL: high wood load.

Fig. S3 Mass spectra of particles in the smog chamber and after the Versatile Aerosol Concentration Enrichment System (VACES). As a measure of agreement between two aerosol mass spectra we used θ , which is the angle between two corresponding vectors. The dashed vertical lines indicate $\theta = 15^{\circ}$. A) Effect of concentration enrichment on particle chemical composition. Mass spectra of particles measured after enrichment with the VACES were compared to those of particles from the smog chamber. B) Effect of chamber evolution on particle chemical composition. Mass spectra of particles from the smog chamber. C) Effect of aging on particle chemical composition shown by comparing mass spectra of primary and aged particles. D) Comparison of mass spectra of primary particles from individual combustion processes demonstrates a considerable difference in particle chemical composition, e.g. D1-2 shows the angle Θ between primary emitted particles comparing days (D) 1 and 2, D1-3 compares days 1 and 3, etc.. AL: average wood load; HL: high wood load.

Fig. S4 Particle deposition efficiency in the aerosol deposition chamber without (w/o) and with electrical field. Scanning mobility particle sizer (SMPS) measurements are described in Figure S1. White: particles passing through the aerosol deposition chamber. Grey: particle losses in the chamber without e-field. 10% of particles lost in the chamber are assumed to be equally deposited on meshes of the delivery tubes and on cells ⁴; Black: particle fraction deposited on meshes (losses) and cells by the electric field. Summing up the black (11.0%) and 10% of the grey areas (1.4%) and subsequent dividing by two (equal deposition on meshes and cells), results in a deposition efficiency of 6.2%.

References

- 1. S. Anjilvel and B. Asgharian, *Fund Appl Toxicol*, 1995, **28**, 41-50.
- 2. O. T. Price, B. Asgharian, F. J. Miller, F. R. Cassee and R. de Winter-Sorkina, *Multiple* path particle dosimetry model (MPPD v 1.0): A model for human and rat airway particle dosimetry, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands, 2002.
- 3. R. R. Mercer, M. L. Russell, V. L. Roggli and J. D. Crapo, *Am J Respir Cell Mol Biol*, 1994, **10**, 613-624.
- 4. P. Mertes, A. P. Praplan, L. Künzi, J. Dommen, U. Baltensperger, M. Geiser, E. Weingartner, J. Ricka, M. Fierz and M. Kalberer, *J Aerosol Med Pulm Drug Deliv*, 2013, **26**, 228-235.