Supporting information

Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: Effect of temperature, pH, and salt content.

Elena Appiani^{1,‡}, Rachele Ossola^{1,‡}, Douglas E. Latch², Paul R. Erickson^{1,*}, Kristopher McNeill^{1,*}

¹Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich Switzerland. ²Department of Chemistry, Seattle University, Seattle, Washington 98122, United States

[‡]These authors contributed equally to this work and are listed alphabetically *Corresponding authors: <u>paul.erickson@env.ethz.ch</u>, <u>kris.mcneill@env.ethz.ch</u>

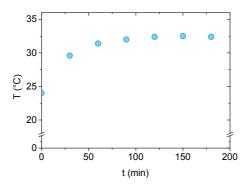
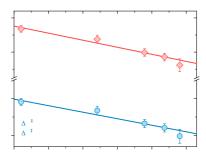



Figure S1 Temperature profile during a 3-hour photolysis experiment performed with 10×365 nm bulbs in a Rayonet reactor and a polymer heat filter cylinder between the bulbs and the sample tubes.

Figure S2 Arrhenius (orange) and Eyring (blue) plots obtained from steady-state experiments performed in the temperature range 6 – 47°C. The errors in $k_{rxn,FFA}^{A}$ are calculated assuming the error in k_{d}^{A} (eq.(4)) is equal to zero.

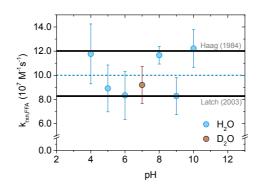


Figure S3 pH dependence on $k_{rxn,FFA}$ studied with the steady-state (β value) method determined at 26°C. The blue dotted line represents the average value measured in water (blue circles) of $(1.0 \pm 0.6) \times 10^8 M^{-1} s^{-1}$. The errors in $k_{rxn,FFA}$ are calculated assuming the error in $k_{d\Delta}^{\Delta}$ (eq.(4)) is equal to zero.

k_d^{Δ} values measured in time-resolved experiments

As a double check, we report the measured k_d^{Δ} (singlet oxygen deactivation rate constant in water without added quenchers, the intercept of the Stern-Volmer plots) in the pH- and T-variation experiments.

 k_d^{Δ} literature values in water range from $2.4 \times 10^5 s^{-1}$ to $3.2 \times 10^5 s^{-1}_{1,2}$, and are known to have a weak T-dependence³. In the pH-variation experiments we measured a constant value of $(2.76 \pm 0.02) \times 10^5 s^{-1}$, in agreement with the available literature. Instead, in the T-variation experiments we observed k_d^{Δ} in the interval $2.69 - 3.00 \times 10^5 s^{-1}$, with the lowest values observed at 10°C and the highest at 45°C.

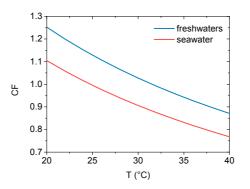
T (°C)	рН	$k_d^{\Delta} (10^5 s^{-1})$
19-20	3.07	2.78 ± 0.02
19-20	3.91	2.76 ± 0.02
19-20	5.11	2.79 ± 0.03
19-20	5.99	2.75 ± 0.02
19-20	6.97	2.76 ± 0.03
19-20	7.99	2.77 ± 0.02
19-20	9.1	2.76 ± 0.02
19-20	10.14	2.75 ± 0.04
19-20	10.93	2.78 ± 0.02
19-20	11.96	2.74 ± 0.03
5.1	6.8	2.71 ± 0.03
10	6.8	2.69 ± 0.03
25.1	6.8	2.78 ± 0.03
25.1	6.8	2.77 ± 0.05
30.1	6.8	2.90 ± 0.05
30.2	6.8	2.89 ± 0.04
35.1	6.8	2.85 ± 0.03
35.5	6.8	2.92 ± 0.05
40.2	6.8	2.96 ± 0.06
40.0	6.8	2.88 ± 0.08
45.1	6.8	2.88 ± 0.07
45.2	6.8	3.00 ± 0.04

Calculation of correction factors for old literature data

Singlet oxygen steady-state concentrations reported in previous studies that used $1.2 \times 10^8 M^{-1} s^{-1}$ for $k_{\text{rxn,FFA}}$ are most likely underestimated by 10 – 20%, the actual value being dependent on the solution temperature and ionic strength, as well as the assumptions in the calculation of $[{}^{1}\text{O}_{2}]_{\text{ss.}}$

For instance, if FFA quenching is *not* taken into account (a reasonable approximation when $[FFA] < 110 \,\mu M_4$), $\begin{bmatrix} {}^{1}O_2 \end{bmatrix}_{ss}$ is determined as

$$[{}^{1}O_{2}]_{ss} = \frac{k_{obs,FFA}}{k_{rxn,FFA}}$$
(S1)


where $k_{obs,FFA}[s^{-1}]$ is the observed degradation rate constant for FFA. Thus, for a given $k_{obs,FFA}$ the following equation holds.

$$\frac{\begin{bmatrix} 1 & 0 \\ 0 \\ 1 \end{bmatrix} = \frac{k_{rxn,FFA}}{k_{rxn,FFA}}$$
(S2)

where $\begin{bmatrix} {}^{1}O_{2} \end{bmatrix}_{ss}^{old}$ is the singlet oxygen steady-state concentration calculated with $k_{rxn,FFA}^{old} = 1.2 \times 10^{8} M^{-1} s^{-1}$ (Haag), and $\begin{bmatrix} {}^{1}O_{2} \end{bmatrix}_{ss}^{new}$ is obtained with $k_{rxn,FFA}^{new}$, whose value depends on solution temperature and ionic strength (see eq.s (13) – (15) in the manuscript). The ratio $\begin{bmatrix} {}^{1}O_{2} \end{bmatrix}_{ss}^{new} / \begin{bmatrix} {}^{1}O_{2} \end{bmatrix}_{ss}^{old} = CF$ is the factor that can be used to convert old singlet oxygen concentration in new corrected values.

$$\begin{bmatrix} {}^{1}O_{2} \end{bmatrix}_{ss}^{new} = CF \cdot \begin{bmatrix} {}^{1}O_{2} \end{bmatrix}_{ss}^{old}$$
(S3)

Figure S4 reports CF values calculated in the temperature interval 20 – 40 °C for freshwaters (blue line) and seawaters (red line) using the equations of the main manuscript.

Figure S4 Correction factors (*CF*) in the temperature interval $20 - 40^{\circ}$ C for singlet oxygen concentrations in freshwater (blue line) and seawater (red line). A reference line (grey, dotted) is drawn at *CF* = 1.0.

References

- (1) Baier, J.; Fuß, T.; Pöllmann, C.; Wiesmann, C.; Pindl, K.; Engl, R.; Baumer, D.; Maier, M.; Landthaler, M.; Bäumler, W. J. Photochem. Photobiol. B 2007, 87 (3), 163–173.
- (2) Wilkinson, F.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data 1995, 24 (2), 663-677.
- (3) Bregnhøj, M.; Westberg, M.; Jensen, F.; Ogilby, P. R. Phys. Chem. Chem. Phys. 2016, 18 (33), 22946–22961.
- (4) Rosario-Ortiz, F. L.; Canonica, S. Environ. Sci. Technol. 2016, 50 (23), 12532–12547.