Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is © The Royal Society of Chemistry 2017

Environmental Science: Processes & Impacts

Electronic Supplementary Information

General baseline toxicity QSAR for nonpolar, polar and ionisable chemicals and their mixtures in the bioluminescence inhibition assay with *Aliivibrio fischeri*

Beate I. Escher,^{a,b} Andreas Baumer,^{a,c} Kai Bittermann,^a Luise Henneberger,^a Maria König,^a Christin Kühnert,^a and Nils Klüver^a

S1. Additional information on the Microtox assay

Fig. S1 Reference compound phenol as a measure of repeatability and robustness of the 384-well plate set up of the Microtox assay. A./B. Phenol controls. C. Solvent methanol. D. Solvent DMSO (for mixtures with Tecan D300 dosing experiment only).

S2. Additional information on the chemicals

Table S1 Additional information on the training set of baseline toxicants (complementing Table 1 of main manuscript). The data are sorted according to increasing logK_{ilpw}.

	Molecular				
	formula	MW [g/mol]	CAS	K _{water/air} [L _{air} /L _{water}]	Provider
1-Butanol	C4H10O	74.12	71-36-3	2291	Sigma-Adrich
2-Butoxyethanol	C6H14O2	118.18	111-76-2	47863	Sigma-Adrich
3-Pentanol	C5H12O	88.15	584-02-1	1862	Sigma-Adrich
1-Hexanol	C6H7N	93.13	62-53-3	19055	Sigma-Adrich
Aniline	C6H14O	102.18	111-27-3	1318	Sigma-Adrich
Nitrobenzene	C6H5NO2	123.1	98-95-3	977	Sigma-Adrich
3-Nitroaniline	C6H6N2O2	138.13	99-09-2	2630268	Sigma-Adrich
2-Nitrotoluene	C7H7NO2	137.14	88-72-2	603	Sigma-Adrich
2-Allylphenol	H2C=CHCH2C6H4OH	134.18	1745-81-9	28840	Sigma-Adrich
2-Phenylphenol	C12H10O	170.21	90-43-7	2290868	Sigma-Adrich

^{a.} Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany.

^{b.} Eberhard Karls University T\u00fcbingen, Environmental Toxicology, Center for Applied Geosciences, 72074 T\u00fcbingen, Germany.

^{c.} Department of Clinical Pharmacy, Leipzig University, Eilenburger Str. 15a, 04317 Leipzig, Germany.

Electronic Supplementary Information

-

	Molecular				
	formula	MW [g/mol]	CAS	$K_{water/air} [L_{air}/L_{water}]$	Provider
2,4,5-Trichloroaniline	C6H4Cl3N	196.46	636-30-6	2512	Sigma-Adrich
4-n-Pentylphenol	C11H16O	164.25	14938-35-3	18197	Sigma-Adrich

Table S2 Additional information on the set of baseline toxicants, their octanol- and liposome-water partition coefficients $\log K_{ow}$ and water solubility C_w^{sat} . The data are grouped in those with EC₅₀ values and those below the solubility cut-off and within each group are sorted according to increasing $\log K_{lipw}$. EC₅₀ and $\log K_{lipw}$ are listed in the main manuscript, Table 2.

							log Cu ^{sat}	log		
				Data		Data	(GSE)	C _w ^{sat}	_	C _w ^{sat}
Chemical name	CAS #	Provider	logK _{lipw}	source"	logK _{ow}	source	°(M)	(M)	Data source	(salt)
Group 1: Ch	emicals of set th	Bortin	iteria for soi	ubility cut-on	and nad n		L ₅₀ values	5	Dhus Dron fragmant	
Cotinine	486-56-6	pharma	-0.57	PP-LFER	0.07	exp.	0.43	0.50	method	0.40
Caffeine	58-08-2	Aldrich	0.28	PP-LFER	-0.07	PhysProp	0.57	-0.95	(1992)	-1.05
Thiacloprid	111988-49-9	Fluka Pestanal	1.19	PP-LFER	1.29	PP-LFER	-0.79	-1.21	PhysProp fragment method	-1.31
Atrazine	1912-24-9	Bertin pharma	2.14	PP-LFER	2.61	PhysProp	-2.11	-3.79	PhysProp exp. Ward (1968)	-3.89
10,11-Dihydro-10- hydroxycarbamazepine	29331-92-8	Analytical Standard	2.67	PP-LFER	2.26	PP-LFER	-1.76	-2.04	PhysProp fragment method	-2.14
Metolachlor	51218-45-2	Fluka Pestanal	2.78	PP-LFER	3.13	PhysProp	-2.63	-2.73	PhysProp exp. Wauchope (1992)	-2.83
Carbamazepine	298-46-4	Fluka Pestanal	3.10	PP-LFER	2.45	PhysProp	-1.95	-3.89	PhysProp fragment method	-3.99
Diuron	330-54-1	Fluka	3.19	PP-LFER	2.68	PhysProp	-2.18	-3.74	PhysProp exp. Tomlin (1994)	-3.84
2-(Methylthio)- benzothiazole	615-22-5	Aldrich	3.26	PP-LFER	3.15	PhysProp	-2.65	-3.16	Physpro. Exp. Brownlee (1992)	-3.26
Tebuconazole	107534-96-3	Fluka Pestanal	3.31	PP-LFER	3.70	PhysProp	-3.20	-3.93	PhysProp exp. Tomlin (1994)	-4.03
Methiocarb	2032-65-7	Fluka Pestanal	3.54	PP-LFER	2.92	PhysProp	-2.42	-3.92	PhysProp exp. Tomlin (1994)	-4.02
Bisphenol A	80-05-7	Aldrich	3.65	(Kwon <i>et</i> <i>al.,</i> 2006)	3.32	PhysProp	-2.82	-3.28	PhysProp exp. Dorn (1987)	-3.38
Cyprodinil	121552-61-2	Fluka Pestanal	3.83	PP-LFER	4.00	PhysProp	-3.50	-4.24	PhysProp exp. Tomlin (1994)	-4.34
Flusilazole	85509-19-9	Fluka Pestanal	4.21	PP-LFER	3.70	PhysProp	-3.20	-3.77	PhysProp exp. Tomlin (1994)	-3.87
Chlorophene	120-32-1	Aldrich	4.31	PP-LFER	3.60	PhysProp	-3.10	-3.17	PhysProp exp. Werner (1983)	-3.27
Chlorpyrifos-methyl	5598-13-0	Fluka Pestanal	4.55	PP-LFER	4.31	PhysProp	-3.81	-4.83	PhysProp exp. Chiou (1977)	-4.93
Group 2: Ch	emicals of set th	at did not pa	ss criteria fo	or solubility cu	t-off and h	ad no measu	rable to	icity		
Carbendazim	10605-21-7	Fluka Pestanal	1.70	PP-LFER	1.52	PhysProp	-1.02	-3.82	PhysProp exp. Tomlin (1994)	-3.92
Oxazepam	604-75-1	Cerilliant	1.83	PP-LFER	2.24	PhysProp	-1.74	-2.45	PhysProp fragment method	-2.55
Fipronil	120068-37-3	Fluka Pestanal	2.50	PP-LFER	4.00	PhysProp	-3.50	-5.36	PhysProp exp. Tomlin (1994)	-5.46
Terbutylazine	5915-41-3	Fluka Pestanal	2.97	PP-LFER	3.21	PhysProp	-2.71	-4.43	PhysProp exp. Tomlin (1994)	-4.53
Diazinon	333-41-5	Fluka Pestanal	3.17	PP-LFER	3.81	PhysProp	-3.31	-3.88	PhysProp exp. Sharom (1980A)	-3.98
Tris(1,3-dichlorisopropyl)- phosphat (TDCPP)	13674-87-8	Fluka Analytical Standard	3.17	PP-LFER	3.65	PhysProp	-3.15	-4.79	PhysProp exp. Yalkowski (1992) (1992)	-4.89
Irgarol	28159-98-0	Fluka Pestanal	3.19	PP-LFER	3.38	PP-LFER	-2.88	-4.10	PhysProp fragment method	-4.20
Picoxystrobin	117428-22-5	Fluka Pestanal	3.22	PP-LFER	3.56	PP-LFER	-3.06	-3.72	PhysProp fragment method	-3.82
Lenacil	2164-08-1	Fluka Pestanal	3.32	PP-LFER	3.22	PP-LFER	-2.72	-4.59	PhysProp exp. Yalkowski (1992) (1992)	-4.69
Chlorpyrifos-ethyl	2921-88-2	Fluka Pestanal	3.42	PP-LFER	4.96	PhysProp	-4.46	-5.50	PhysProp exp. Yalkowski (1992) (1992)	-5.60
Naphthalene	91-20-3	Analytical Standard	3.44	PP-LFER	3.30	PhysProp	-2.80	-3.62	PhysProp exp. Pearlman(1984)	-3.72

				Data		Data	log Cw ^{sat} (GSE)	log Cw ^{sat}		C _w ^{sat}
Chemical name	CAS #	Provider	logK _{lipw}	source	logKow	source	(M)	(M)	Data source	(salt)
Flutamide	13311-84-7	Sigma- Aldrich	3.57	PP-LFER	3.35	PhysProp	-2.85	-4.23	PhysProp fragment method PhysProp exp. Shiu	-4.33
Propiconazole	60207-90-1	Fluka Pestanal	3.81	PP-LFER	3.72	PhysProp	-3.22	-3.49	(1990)	-3.59
Epoxyconazole	133855-98-8	Fluka Pestanal	4.08	PP-LFER	3.44	PhysProp	-2.94	-4.70	PhysProp exp. Tomlin (1994)	-4.80
Prazepam	2955-38-6	Sigma- Aldrich	4.46	PP-LFER	3.73	PhysProp	-3.23	-6.48	PhysProp fragment method	-6.58
Triphenyl phosphate	115-86-6	Aldrich	4.59	PP-LFER	4.59	PhysProp	-4.09	-5.23	PhysProp. Exp. Saeger (1979)	-5.33
Boscalid	188425-85-6	Fluka Pestanal	4.59	PP-LFER	2.96	PhysProp	-2.46	-5.80	PhysProp fragment method	-5.90
Pendimethalin	40487-42-1	Fluka Pestanal	4.80	PP-LFER	5.18	PhysProp	-4.68	-5.02	PhysProp fragment method	-5.12
Fenofibrate	49562-28-9	Bertin Pharma	4.97	PP-LFER	5.14	PP-LFER	-4.64	-5.64	PhysProp fragment method	-5.74
Quinoxyfen	124495-18-7	Fluka Pestanal	4.98	PP-LFER	4.66	PhysProp	-4.16	-4.81	PhysProp fragment method	-4.91
Penconazole	66246-88-6	Fluka Pestanal	5.04	PP-LFER	4.93	PP-LFER	-4.43	-3.59	PhysProp exp. Tomlin (1994)	-3.69
Anthracene	120-12-7	Fluka Analytical Standard	5.12	PP-LFER	4.45	PhysProp	-3.95	-6.61	Physporp exp. May (1983)	-6.71
Triclocarban	101-20-2	Sigma- Aldrich	5.23	PP-LFER	4.54	PP-LFER	-4.04	-7.11	PhysProp fragment method	-7.21
Fluoranthene	206-44-0	Fluka Analytical Standard	5.41	PP-LFER	5.16	PhysProp	-4.66	-5.89	PhysProp exp. Mackay (1977)	-5.99
Tris(methylphenyl)phospha te (TMPP)	1330-78-5	Fluka Analytical Standard	5.59	PP-LFER	5.82	PP-LFER	-5.32	-6.09	PhysProp exp.	-6.19
4-Nonylphenol	104-40-5	Fluka Pestanal	5.85	(Kwon <i>et</i> <i>al.,</i> 2006)	5.76	PhysProp	-5.26	-4.50	PhysProp exp. Yalkowski (1992)	-4.60
Tris(3 5-		Grey-								
dimethylphenyl)phosphate (T35DMPP)	25653-16-1	hound Chromato graphy	6.45	PP-LFER	7.01	PP-LFER	-6.51	-5.66	PhysProp exp. Saeger (1979)	-5.76
Benzo(b)fluoranthene	205-99-2	Sigma- Aldrich	6.89	(van der Heijden and Jonker, 2009)	5.78	PhysProp	-5.28	-8.23	PhysProp exp. Yalkowski (1992)	-8.33
Benzo(k)fluoranthene	207-08-9	Sigma- Aldrich	6.92	(van der Heijden and Jonker, 2009) (van der	6.11	PhysProp	-5.61	-8.50	PhysProp exp. Pearlman (1984)	-8.60
Benzo(a)pyrene	50-32-8	Sigma- Aldrich	7.05	Heijden and Jonker, 2009)	6.13	PhysProp	-5.63	-7.28	PhysProp fragment method	-7.38
Indeno(1,2,3-c,d)pyrene	193-39-5	Sigma- Aldrich	7.38	(van der Heijden and Jonker, 2009)	6.64	PP-LFER	-6.14	-8.01	PhysProp fragment method	-8.11
Benzo(g,h,i)perylene	191-24-2	Sigma- Aldrich	7.66	(van der Heijden and Jonker, 2009)	6.83	PP-LFER	-6.33	-9.18	PhysProp fragment method	-9.28
Di(2-ethylhexyl)phthalate (DEHP)	117-81-7	Fluka Pestanal	7.79	PP-LFER	7.60	PhysProp	-7.10	-8.11	(Mitsunobu and Takahashi, 2006)	-8.21

^aCalculated with the PP-LFER equation for $\log K_{lipw} = 0.48 + 0.55L - 0.95 S - 0.05 A -4.02 B + 1.65 V(Endo$ *et al.*, 2011) and chemical parameters taken from the UFZ-LSER database v 3.1 (www.ufz.de/lserd) (Endo*et al.* $, 2015). ^bGeneralised solubility equation. ^cPhysProp database accessed via Episuite (U.S. EPA, 2009). The references are found in the PhysProp database and are added her only for orientation. For those chemicals without experimental solubility, the values from the fragment method in PhysProp were preferred over the <math>K_{ow}$ prediction because it generally delivered more conservative estimates.

Electronic Supplementary Information

Table S3 Additional information on the ionisable chemicals, complementing Table 3 in the main manuscript. The data are sorted according to increasing logD_{lipw}(pH7)

Chemical name	Provider	CAS #	log K _{ow} [L/L] 25°C	Reference ^{a,b}	рKa	Reference ^c	logK _{lipw neutral} (25°C)	Reference	logK _{lipw ion}	Reference
				Anionic and n	eutral/anio	onic chemicals				
				PhysProp						
Theophyllin	Alfa Aesar	58-55-9	-0.04	exp. Sangster 1993	8.81	PhysProp exp. Kortum (1961)	-0.37	COSMOmic	1.06	COSMOmic
Salicylic acid	Sigma- Aldrich	69-72-7	2.26	PhysProp, exp. Hansch, (1995)	2.97	PhysProp exp. Serjeant (1979)	2.50	(Ottiger and Wunderli- Allenspach, 1997)	1.04	(Ottiger and Wunderli- Allenspach, 1997)
1,2- Benzisothiaz olinone	Sigma- Aldrich	2634-33-5	0.65	PP-LFER	7.3	(SCCNFP, 2004)	1.19	PP-LFER	1.80	COSMOmic
Sulfadimidin / Sulfamethaz in	Sigmal- Aldrich	57-68-1	0.89	PhysProp exp. BioByte (1995)	7.59	PhysProp, exp. Sangster (1994)	1.53	PP-LFER	1.61	COSMOmic
Sulfamethox azole	Fluka Analytical Standard	723-46-6	0.89	PhysProp exp. Hansch (1995)	5.70	(Huber <i>et</i> <i>al.</i> , 2003)	1.26	PP-LFER	1.56	COSMOmic
Warfarin	Sigma- Aldrich	81-81-2	2.7	PhysProp exp. Hansch (1995)	4.9	(Ottiger and Wunderli- Allenspach, 1997)	3.39	(Ottiger and Wunderli- Allenspach, 1997)	1.4	(Ottiger and Wunderli- Allenspach, 1997)
2,4- dichlorophe noxyacetic acid	Bertin Pharma	94-75-7	2.81	PhysProp, exp.	2.58	(Barzanti <i>et</i> <i>al.,</i> 2007)	3.60	(Barzanti <i>et</i> <i>al.,</i> 2007)	1.70	(Barzanti <i>et</i> <i>al.,</i> 2007)
Mecoprop	Fluka Pestanal	93-65-2	3.20	PhysProp exp. Tomlin (1997) PhysProp	3.1	(Cessna and Grover, 1978)	2.78	PP-LFER	1.77	COSMOmic
Ketoprofen	Sigma	22071-15-4	3.12	exp. Sangster (1993)	4.25	(Bouchard <i>et al.,</i> 2002)	3.78	PP-LFER	1.69	COSMOmic
Clofibric acid	Fluka Analytical Standard Fluka	882-09-7	2.57	PhysProp exp. Hansch (1995)	2.5	(Drillia <i>et al.,</i> 2005)	2.62	PP-LFER	1.83	COSMOmic
Bezafibrate	Analytical Standard	41859-67-0	4.07	PP-LFER	3.6	(Huber <i>et</i> <i>al.,</i> 2003)	4.25	PP-LFER	1.81	COSMOmic
2,4- Dinitrophen ol (DNP)	Fluka Analytical Standard	51-28-5	1.67	(Schwarzen- bach <i>et al.,</i> 1988)	3.9	(Schwarzenb ach <i>et al.,</i> 1988)	2.64	(Escher <i>et</i> <i>al.,</i> 2000)	1.90	(Escher <i>et</i> <i>al.,</i> 2000)
Ibuprofen	Bertin Pharma	15687-27-1	3.97	PhysProp exp. Avdeef (1997)	4.45	(Avdeef <i>et</i> <i>al.,</i> 1998)	3.80	(Avdeef <i>et</i> <i>al.,</i> 1998)	1.81	(Avdeef <i>et</i> <i>al.,</i> 1998)
Naproxen	Cayman Chemical Company	22204-53-1	3.18	PhysProp exp. Hansch. (1995)	4.18	(Bouchard <i>et al.,</i> 2002)	3.84	PP-LFER	1.92	COSMOmic
Diclofenac	Chemical Company	15307-86-5	4.51	exp. Avdeef (1997)	3.99	(Avdeef <i>et</i> <i>al.</i> , 1998) PhysProp	4.45	(Avdeef <i>et</i> <i>al.,</i> 1998)	2.64	(Avdeef <i>et</i> <i>al.,</i> 1998)
Mefenamic acid	Fluka	61-68-7	5.12	PhysProp exp. Hansch (1995)	4.2	exp. Sangster (1994)	5.39	PP-LFER	2.67	COSMOmic
Torasemide	Fluka	56211-40-6	3.37	PhysProp	6.68	(Masereel,	3.48	PP-LFER	2.23	COSMOmic

Environmental Science: Processes & Impacts

Chemical name	Provider	CAS #	log K _{ow} [L/L] 25°C	Reference ^{a,b}	р <i>К</i> а	Reference ^c	logK _{lipw neutral} (25°C)	Reference	logK _{lipw ion}	Reference
				exp. BioByte (2009)		1993)				
				PhysProp		PhysProp				
Cholic acid	Alfa Aesar	81-25-4	2 02	exp Roda	4 98	exp.	5.09	PP-I FFR	1.68	COSMOmic
	/ ind / cour	01 23 4	2.02	(1990)	4.50	Serjeant	5.05		1.00	cositionine
				(1990)		(1979)				
Trifloxystrob in	Fluka Pestanal	252913-85-2	5.37	PP-LFER	4.7	ACD/pKa GALAS	4.79	PP-LFER	3.04	COSMOmic
	Fluka					(Schwarzenb		(Eschor et		(Eschor et
Dinoseb	Pestanal	88-85-7	3.56	PhysProp	4.62	ach <i>et al.,</i> 1988)	3.96	al., 2000)	3.35	al., 2000)
Genistein	Roth	446-72-0	3.08	PP-LFER	7.2	(Zielonka <i>et</i>	3.65	PP-LFER	3.30	COSMOmic
				PhysProp		un, 2005)				
				exp. Chem		(Lindström				
Triclosan	Fluka	3380-34-5	4.76	Inspect Test	7.9	et al., 2002)	5.43	PP-LFER	3.41	COSMOmic
				Inst (1992)		,				
				PhysProp		PhysProp,				
	Sigma-			exp.		exp.				
Paracetamol	Aldrich	103-90-2	0.46	Sangster	9.38	Dastmalchi	1.02	COSMOmic	1.35	COSMOmic
				(1994)		et al. (1995)				
				Cationic and n	eutral/cati	onic chemicals				
						PhysProp				
				PhysProp		exp.				
Cimetidine	Sigma-	51481-61-9	0.40	exp. Hansch		Tomlsison	0.46	COSMOmic	0.22	COSMOmic
	Aldrich			(1995)		and				
					6.9	Harkenschei				
	Eluorochem				0.8	u (1986) (Vasskog et				
Citalopram	LTD	59729-33-8	3.58	PP-LFER	9.59	al., 2006)	3.30	PP-LFER	1.31	COSMOmic
	Sigma-			PhysProp		(Hasegawa				
Verapamil	Aldrich	52-53-9	3.79	exp. Hansch (1995)	8.92	<i>et al.,</i> 1984)	3.82	PP-LFER	1.27	COSMOmic
	Sigma-			PhysProp,		(Avdeef et		(Barzanti <i>et</i>		(Barzanti <i>et</i>
Propranolol	Aldrich	525-66-6	3.48	exp. Avdeef	9.53	al 1998)	3.40	al 2007)	2.6	al 2007)
	, address			(1997)		un, 1990,		un, 2007,		un, 2007,
	Cayman			PhysProp		(Ishihama et				
Lamotrigine	Chemical	84057-84-1	2.57	exp. BioByte	5.34	al., 2002)	2.74	PP-LFER	1.74	COSMOmic
	Company			(2009)						
Doxylamine	Sigma-	469-21-6	2.47	PPLFER	8.7	АСД/рка	4.46	COSMOmic	1.24	COSMOmic
	Alunch					GALAS				
Dinhenbydr	Sigma-			PhysProp,		evo				
amine	Aldrich	58-73-1	3.27	exp. Hansch	8.98	Sangster	4.80	PP-LFER	2.16	COSMOmic
annic	Alunch			(1995)		(1994)				
	Fluka									
Climbazole	Analytical	38083-17-9	2.96	PP-LFER	6.6	GALAS	2.96	PP-LFER	3.03	COSMOmic
	Standard					GALAS				
	Sigma-			PhysProp,		ACD/pKa				
Loratadine	Aldrich	/9/94-/5-5	5.2	exp. Hansch (1995)	4.75	GALAS	4.31	COSMOmic	1.76	COSMOmic
	Cierre			PhysProp,						
Cinnarizine	Sigma-	298-57-7	5.77	exp. BioByte	8.04	ACD/pKa		pp-LFER	3.55	COSMOmic
	Aldrich			(1995)		GALAS				
Colsoversier	Fluka	110124 20 0	6.05		6.0	(PPDB,	F 05		2.00	COEMO
spiroxamine	Pestanal	110134-30-8	0.05	PP-LFEK	0.9	2007)	5.05	rr-ffr	2.80	CUSIVIUMIC
Hexadecyltri	Sigma-									
methylamm onium	Aldrich	112-02-7	-	-	-	-	-	-	6.38	COSMOmic

.

Chemical name	Provider	CAS #	log K _{ow} [L/L] 25°C	Reference ^{a,b}	рKа	Reference ^c	logK _{lipw neutral} (25°C)	Reference	logK _{lipw ion}	Reference
Hexadecylpy ridinium	Sigma- Aldrich	7773-52-6	-	-	-	-	-	-	6.73	COSMOmic
Didecyldime thylammoni um	Sigma- Aldrich	7173-51-5	-	-	-	-	-	-	6.85	COSMOmic

^aPhysProp database accessed via Episuite (U.S. EPA, 2009). The references are found in the PhysProp database and are added here only for orientation. ^bCalculated with the PP-LFER equation for logK_{lipw} = 0.48 + 0.55L - 0.95 S - 0.05 A - 4.02 B + 1.65 V (Endo et al., 2011) and chemical parameters taken from the UFZ-LSER database v 3.1.(Endo et al., 2015) ^cACD/Percepta (ACD/Percepta, 2015).

S3. Additional information on the single chemical experiments

Fig. S2 Concentration-effect curves of the 12 baseline toxicants of the training set.

Fig. S3. Comparison of the baseline toxicity QSAR developed in this study for the 384-well plate format (in dark red red) with previous studies on narcosis I (nonpolar narcosis) (polar narcosis) chemicals, including our own previous study of the Microtox test performed in 96-well plate format(Tang *et al.*, 2013) (light red) and QSARs published in literature (Cronin and Schultz, 1997; Zhao *et al.*, 1998; Vighi *et al.*, 2009; Aruoja *et al.*, 2011; Li *et al.*, 2015; Wang *et al.*, 2016). This figure is amended from a figure in (Tang *et al.*, 2013) and the log K_{iipw} values are rescaled to log K_{iipw} values using the with the log K_{iipw} -log K_{ow} relationships provided by (Vaes *et al.*, 1997) The shaded area comprises the range of 0.1 < TR < 10 of the baseline toxicity QSAR of the present study.

Fig. S4 Concentration-effect curves of the neutral chemicals of the set.

Fig. S5 Dependence of EC_{50} values of phenol and chlorophene on the exposure time.

. on / M)

log (

. on/M) Fig. S6 Concentration-effect curves of the ionic/ionisable chemicals.

5

log (

1999**: 19**97

log

-4 on/ M)

S3. Additional information on the mixture experiments

Fig. S7 Concentration-effect curves of the 2-component mixtures of baseline toxicants.

Fig. S8 Concentration-effect curves of the 3- and 4-component mixtures of baseline toxicants.

Fig. S10 Concentration-effect curves of the 8-, 9- and 12-component mixtures of baseline toxicants.

Table S4 Summary of the composition of the components (in % mol fractions) in the mixture experiments, experimental EC_{s0} and slope from fit of experimental data.

Base- line mix- ture	1-Buta- nol	2- Butoxy ethanol	3- Penta- nol	1-Hexa- nol	Aniline	Nitro- ben- zene	3-Nitro- aniline	2-Nitro- toluene	2-Allyl- phenol	2- Phenyl phenol	2,4,5- Trichlor o- aniline	4-n- Pentyl- phenol	logE	C _{50,exp}	SI	ope
		Nonpolar	Narcotics					Polar N	arcotics							
#1	99.8%			0.25%									-1.32	±0.02	2.24	±0.18
#2	95.3%			4.73%									-1.37	±0.01	1.91	±0.09
#3		99.6%							0.41%				-2.12	±0.01	2.10	±0.07
#4			99.9%				0.11%						-1.39	±0.01	2.85	±0.19
#5				83.8%					16.2%				-2.69	±0.01	2.04	±0.06
#6		94.0%							6.01%				-2.38	±0.01	1.80	±0.07
#7		94.6%						5.43%					-2.26	±0.01	1.92	±0.07
#8			96.9%				3.14%						-1.56	±0.01	1.82	±0.06
#9			99.9%									0.06%	-1.27	±0.01	1.63	±0.05
#10								90.7%		9.28%			-3.24	±0.00	1.41	±0.02
#11								75.8%		24.2%			-3.40	±0.01	1.69	±0.04
#12										49.4%	50.6%		-3.90	±0.01	1.88	±0.06
#13							91.3%				8.66%		-3.17	±0.01	1.89	±0.06
#14					98.2%							1.80%	-2.83	±0.01	1.97	±0.08
#15					50.0%	50.0%							-2.52	±0.01	2.31	±0.18
#16	97.6%	2.19%		0.24%									-1.38	±0.01	2.41	±0.16
#17	94.4%			4.69%					0.91%				-1.50	±0.01	2.14	±0.11
#18	96.3%					2.78%			0.92%				-1.49	±0.01	2.30	±0.10
#19		93.0%						5.34%		1.71%			-2.43	±0.01	1.62	±0.05
#20			96.6%				3.13%				0.30%		-1.75	±0.02	1.77	±0.12
#21								82.6%		8.46%	8.90%		-3.37	±0.00	1.23	±0.02
#22										47.9%	50.4%	1.77%	-3.76	±0.00	1.41	±0.03
#23					49.5%	49.5%						0.91%	-2.70	±0.02	1.84	±0.14
#24	53.5%	1.20%	45.1%	0.13%									-1.34	±0.02	2.59	±0.24
#25	82.7%	12.4%		4.11%					0.79%				-1.65	±0.01	1.85	±0.08
#26			94.0%		2.95%	2.95%						0.05%	-1.63	±0.01	1.88	±0.08
#27								40.8%	50.7%	4.17%	4.39%		-3.25	±0.01	1.90	±0.07
#28					78.2%	10.5%	11.2%					0.004%	-2.33	±0.04	2.77	±0.57
#29							67.7%	19.6%		6.26%	6.42%		-3.22	±0.01	1.81	±0.04
#30	80.2%	12.0%		3.98%			2.39%	0.69%	0.77%				-1.90	±0.01	1.78	±0.07
#31			91.3%		2.87%	2.87%	2.96%	0.000/				0.053%	-1.82	±0.01	1.74	±0.06
#32			95.4%				3.10%	0.89%	0 700/	0.29%	0.29%		-1.90	±0.01	1.81	±0.06
#33	80.9%	13.2%		4.19%				0.72%	0.79%	0.25%			-1./1	±0.03	1.77	±0.23
#34	81.9%	12.3%		4.07%				0.71%	0.79%	0.23%	0.25%		-1.85	±0.01	1.72	±0.07
#35		13.5%	82.6%				2.68%	0.77%	0.000	0.25%	0.25%	0.0470/	-1.93	±0.01	1.72	±0.05
#36	89.5%			4.44%	2.58%	2.58%		0.10%	0.86%	0.02%	0.02%	0.047%	-1.74	±0.01	2.07	±0.10
#37		95.8%					4.07%	0.10%		1.25%	0.03%	0.002%	-2.05	±0.02	1.52	10.12
#38		78.3%					16.1%	2.53%		1.25%	1.47%	0.323%	-2.03	±0.02	1.00	10.13
#39			76.0%		18.3%	2.56%	2.80%				0.23%	0.049%	-1.70	+0.01	2.06	+0.07
#40	50.00/	4.2004	91.0%	0.400/	2.86%	2.86%	2.95%		E-10 ⁻⁴		0.28%	1.10-5	-1.07	+0.01	2.00	±0.07
#41	53.3%	1.20%	45.0%	0.13%	0.33%	0.04%	0.000/	7.10-3	0.10 ⁻³	10-3%	10-3%	110	-1.59	±0.02	2.40	±0.25
#42	97.5%	2.19%		0.24%			0.09%	0.60%	910	10 %	10 %		-1.45	±0.02	1 71	±0.20
#43	79.8%	12.0%	00.40/	3.96%	0 700/	0.400/	2.38%	0.09%	0.77%	0.22%	0.23%	2.10-5	-2.04	+0.01	2 72	±0.05
#44			99.1%		0.73%	0.10%	0.10%	0.01%		0.27%	0.28%	0.052%	-1.40	+0.01	1.86	+0.20
#45	AE 10/	C 770/	90.0%	2 2 40/	2.03%	2.83%	2.92%	0.0470	0.43%	0.2770	0.2070	0.032%	-1 77	+0.01	1 72	+0.06
#45	45.1%	0.//%	41.5%	2.24%	1.30%	1.30%	1.34%	0 36%	0.45%	0 17%	0 13%	0.024/0	-1 85	+0.02	1.75	+0.10
#4/ #40	4U./%	1 20%	37.8%	2.11%	9.10%	1.27%	1.39%	0.004	0.005	4.10-4	4·10 ⁻⁴	10 ⁻⁵ %	-1 40	+0.02	2 43	+0.19
#48 #40	52 30/	1.20%	45.0%	0.13%	0.33%	0.04%	0.05%	0.004	0.005	4 ⁻¹⁰⁻⁴	4 ⁻¹⁰	10 ⁻⁵ %	-1 30	+0.02	2.75	+0.16
#49 #50	25.3% 11 º/	6 72%	43.0%	0.13% 2.220/	1 20%	1 200/	1 2/10/	0.39%	0.005	- 10 0 12%	0 12%	0.02/%	-1 8/	±0.01 +0.01	1 74	+0.10
#5U #E1	44. % 11 0º/	6 72%	41.2%	2.23%	1.29%	1 200/	1 2/10/	0.39%	0.43%	0.12%	0.13%	0.024%	-1 87	±0.01 +0.01	1 80	±0.00
#51 #53	44.3%	6 72%	41.2%	2.23%	1 20%	1 200/	1 2/10/	0.39%	0.43%	0.12%	0 12%	0.024/0	-1 86	±0.01	1 01	+0.07
πJL		0.75/0	71.2/0	2.23/0	1.23/0	1.2.370	1.0+/0	2.3370	27.370	/0	2.23/0	2.024/0	2.50	20.01	2.22	_0.07

Fig. S11 Concentration-effect curves of the mixtures of chemicals from the validation chemical set.

Table S5 Summary of the composition of the components (in % mol fractions) in the mixture experiments with the chemicals from the set, experimental EC_{50.exp} and slope from fit of experimental data.

				san	tein	dinil	Diazi- non not	cona- zole	-phos- phate not	(a)py- rene	an- thene	LogE	C _{50,exp}	Slo	ope
active	active	active	active	active	active	active	active	active	active	active	active				
#1			35.0%				65.0%					no e	effect		
#2 68.9%										31.1%		no e	effect		
#3					83.1%			16.9%				-3.82	±0.02	1.14	±0.06
#4						77.8%			22.2%			no e	effect		
#5		99.6%									0.4%	no e	effect		
#6 39.8%							60.2%					-3.27	±0.04	1.06	±0.10
#7	84.2%			15.8%								-3.82	±0.02	2.21	±0.17
#8		68.8%						24.4%	6.8%			no e	effect		
#9			10.1%		88.2%					1.7%		-4.56	±0.04	0.41	±0.02
#10 29.3%	7.3%		1.9%	0.33%	16.8%		44.3%					-4.46	±0.03	0.71	±0.03
#11		33.3%	5.2%		45.6%			11.8%	3.3%	0.9%		-4.21	±0.02	0.56	±0.02
#12 29.5%	7.4%	12.4%					44.7%	4.4%	1.2%	0.3%		-3.53	±0.02	1.57	±0.14
#13 24.8%	6.2%	10.4%	1.6%		14.3%		37.6%	3.7%	1.0%	0.3%		-4.30	±0.02	1.05	±0.05
#14 5.4%	7.8%	22.9%	4.8%	0.7%	47.4%	2.5%	3.4%	4.0%	0.9%	0.1%	0.1%	-3.80	±0.02	1.06	±0.05

References

ACD/Percepta (2015). Build 2726, Advanced Chemistry Development, Inc., Toronto, On, Canada, http://www.acdlabs.com.

- Aruoja, V., Sihtmaee, M., Dubourguier, H.-C. and Kahru, A. (2011). Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: Comparison with published data and QSARs. *Chemosphere*, **84**(10): 1310-1320.
- Avdeef, A., Box, K.J., Comer, J.E.A., Hibbert, C. and Tam, K.Y. (1998). pH-metric logP 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs. *Pharmaceutical Research*, **15**(2): 209-215.
- Barzanti, C., Evans, R., Fouquet, J., Gouzin, L., Howarth, N.M., Kean, G., Levet, E., Wang, D., Wayemberg, E., Yeboah, A.A. and Kraft, A. (2007). Potentiometric determination of octanol-water and liposome-water partition coefficients (logP) of ionizable organic compounds. *Tetrahedron Letters*, **48**(19): 3337-3341.
- Bouchard, G., Carrupt, P.A., Testa, B., Gobry, V. and Girault, H.H. (2002). Lipophilicity and solvation of anionic drugs. *Chemistry-a European Journal*, **8**(15): 3478-3484.
- Cessna, A.J. and Grover, R. (1978). Spectrophotometric determination of dissociation constants of selected acidic herbicides. *Journal of Agricultural and Food Chemistry*, **26**(1): 289-292.
- Cronin, M.T.D. and Schultz, T.W. (1997). Validation of Vibrio fisheri acute toxicity data: mechanism of action-based QSARs for non-polar narcotics and polar narcotic phenols. Science of the Total Environment, **204**(1): 75-88.
- Drillia, P., Stamatelatou, K. and Lyberatos, G. (2005). Fate and mobility of pharmaceuticals in solid matrices. Chemosphere, 60(8): 1034-1044.
- Endo, S., Brown, T.N., Watanabe, N., Ulrich, N., Bronner, G., Abraham, M. and Goss, K.-U. (2015). UFZ-LSER database v 3.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. 2015 [accessed on 27.11.2016]. Available from http://www.ufz.de/lserd.
- Endo, S., Escher, B.I. and Goss, K.U. (2011). Capacities of Membrane Lipids to Accumulate Neutral Organic Chemicals. *Environmental Science & Technology*, **45**(14): 5912-5921.
- Escher, B.I., Schwarzenbach, R.P. and Westall, J.C. (2000). Evaluation of liposome-water partitioning of organic acids and bases. 1. Development of a sorption model. *Environmental Science & Technology*, **34**(18): 3954-3961.
- Hasegawa, J., Fujita, T., Hayashi, Y., Iwamoto, K. and Watanabe, J. (1984). PKa determination of verapamil by liquid liquid partition. *Journal of Pharmaceutical Sciences*, **73**(4): 442-445.
- Huber, M.M., Canonica, S., Park, G.-Y. and von Gunten, U. (2003). Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. Environmental Science & Technology, **37**(5): 1016-1024.
- Ishihama, Y., Nakamura, M., Miwa, T., Kajima, T. and Asakawa, N. (2002). A rapid method for pKa determination of drugs using pressure-assisted capillary electrophoresis with photodiode array detection in drug discovery. *Journal of Pharmaceutical Sciences*, **91**(4): 933-942.
- Kwon, J.H., Liljestrand, H.M. and Katz, L.E. (2006). Partitioning of moderately hydrophobic endocrine disruptors between water and synthetic membrane vesicles. *Environmental Toxicology and Chemistry*, **25**(8): 1984-1992.
- Li, J.J., Wang, X.H., Wang, Y., Wen, Y., Qin, W.C., Su, L.M. and Zhao, Y.H. (2015). Discrimination of excess toxicity from narcotic effect: Influence of species sensitivity and bioconcentration on the classification of modes of action. *Chemosphere*, **120**: 660-673.
- Lindström, A., Buerge, I.J., Poiger, T., Bergqvist, P.-A., Müller, M.D. and Buser, H.-R. (2002). Occurrence and Environmental Behavior of the Bactericide Triclosan and Its Methyl Derivative in Surface Waters and in Wastewater. *Environmental Science & Technology*, **36**(11): 2322-2329.

Masereel, B. (1993). Torasemide Derivatives: New Perspectives. Cardiovascular Drug Reviews, 11(3): 359-369.

- Mitsunobu, S. and Takahashi, Y. (2006). Study of the water solubility and sorption on particulate matters of phthalate in the presence of humic acid using C-14 labelled di-(2-ethylhexyl)phthalate. *Water Air and Soil Pollution*, **175**(1-4): 99-115.
- Ottiger, C. and Wunderli-Allenspach, H. (1997). Partition behaviour of acids and bases in a phosphatidylcholine liposome-buffer equilibrium dialysis system. *European Journal of Pharmaceutical Sciences*, **5**(4): 223-231.
- PPDB (2007). Pesticide Properties DataBase, University of Hertfordshire, http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm.

SCCNFP (2004). Opinion concerning benzisothiazolinone. SCCNFP/0811/04.

- Schwarzenbach, R.P., Stierli, R., Folsom, B.R. and Zeyer, J. (1988). Compound properties relevant for assessing the environmental partitioning of nitrophenols. *Environmental Science & Technology*, **22**(1): 83-92.
- Tang, J.Y.M., McCarty, S., Glenn, E., Neale, P.A., Warne, M.S. and Escher, B.I. (2013). Mixture effects of organic micropollutants present in water: towards the development of effect-based water quality trigger values for baseline toxicity. *Water Research* 47(10): 3300-3314.
- U.S. EPA (2009). U.S. EPA, EPISuite Exposure Assessment Tools and Models, http://www.epa.gov/oppt/exposure/, US Environmental Protection Agency.
- Vaes, W.H.J., Ramos, E.U., Hamwijk, C., vanHolsteijn, I., Blaauboer, B.J., Seinen, W., Verhaar, H.J.M. and Hermens, J.L.M. (1997). Solid phase microextraction as a tool to determine membrane/water partition coefficients and bioavailable concentrations in in vitro systems. *Chemical Research in Toxicology*, **10**(10): 1067-1072.
- van der Heijden, S.A. and Jonker, M.T.O. (2009). Evaluation of Liposome-Water Partitioning for Predicting Bioaccumulation Potential of Hydrophobic Organic Chemicals. Environmental Science & Technology, **43**(23): 8854-8859.
- Vasskog, T., Berger, U., Samuelsen, P.-J., Kallenborn, R. and Jensen, E. (2006). Selective serotonin reuptake inhibitors in sewage influents and effluents from Tromsø, Norway. *Journal of Chromatography A*, **1115**(1–2): 187-195.
- Vighi, M., Migliorati, S. and Monti, G.S. (2009). Toxicity on the luminescent bacterium Vibrio fischeri (Beijerinck). I: QSAR equation for narcotics and polar narcotics. *Ecotoxicology and Environmental Safety*, **72**(1): 154-161.
- Wang, X.H., Yu, Y., Huang, T., Qin, W.C., Su, L.M. and Zhao, Y.H. (2016). Comparison of Toxicities to Vibrio fischeri and Fish Based on Discrimination of Excess Toxicity from Baseline Level. *Plos One*, **11**(2).
- Zhao, Y.H., Ji, G.D., Cronin, M.T.D. and Dearden, J.C. (1998). QSAR study of the toxicity of benzoic acids to Vibrio fischeri, Daphnia magna and carp. Science of the Total Environment, **216**(3): 205-215.
- Zielonka, J., Gbicki, J. and Grynkiewicz, G. (2003). Radical scavenging properties of genistein. Free Radical Biology and Medicine, 35(8): 958-965.